Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-08T13:17:47.129Z Has data issue: false hasContentIssue false

Carbon Nanomaterials for Applications on Supercapacitors

Published online by Cambridge University Press:  30 May 2017

Youning Gong
Affiliation:
School of Physics and Technology, and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan, 430072, China
Qiang Fu
Affiliation:
School of Physics and Technology, and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan, 430072, China Center for Electron Microscopy, Wuhan University, Wuhan, 430072, China
Chunxu Pan*
Affiliation:
School of Physics and Technology, and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan, 430072, China Center for Electron Microscopy, Wuhan University, Wuhan, 430072, China
*
Get access

Abstract

Supercapacitor is a newly-developed device for electrochemical energy storage with high power density, long life span, as well as rapid capture and storage of energy. Carbon-based materials, from carbon nanospheres, nanotubes and nanofibers to graphene, are the most commonly used electrode materials for supercapacitors. Our group has engaged in the research of carbon nanomaterials over the past decade. Herein we summarize some typical carbon nanomaterials and their synthetic routes based on our published works, which is expected to provide the theoretical and experimental basis for further applications on carbon-based energy storage devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Winter, M. and Brodd, R.J., Chem. Rev. 104, 4245 (2004).Google Scholar
Simon, P. and Gogotsi, Y., Nat. Mater. 7, 845 (2008).Google Scholar
Zhang, S.L. and Pan, N., Adv. Energy Mater. 5, 1401401 (2015).CrossRefGoogle Scholar
Wang, Y.G., Song, Y.F. and Xia, Y.Y., Chem. Soc. Rev. 45, 5925 (2016).Google Scholar
Jiang, H., Lee, P.S. and Li, C.Z., Energy Environ. Sci. 6, 41 (2013).Google Scholar
Pandolfo, A.G. and Hollenkamp, A.F., J. Power Sources 157, 11 (2006).Google Scholar
Zhang, L.L. and Zhao, X.S., Chem. Soc. Rev. 38, 2520 (2009).Google Scholar
Lei, Z.B., Christov, N., Zhang, L.L. and Zhao, X.S., J. Mater. Chem. 21, 2274 (2011).Google Scholar
You, B., Yang, J., Sun, Y.Q. and Su, Q.D., Chem. Commun. 47, 12364 (2011).Google Scholar
Li, D.L., Gong, Y.N., Zhang, Y.P., Luo, C.Z., Li, W.P., Fu, Q. and Pan, C.X., Sci. Rep. 5, 12903 (2015).Google Scholar
Yuan, C.Z., Wu, H.B., Xie, Y. and Lou, X.W., Angew. Chem. Int. Ed. 53, 1488 (2014).CrossRefGoogle Scholar
Mohamed, S.G., Chen, C.J., Chen, C.K., Hu, S.F. and Liu, R.S., ACS Appl. Mater. Interfaces 6, 22701 (2014).Google Scholar
Hadhav, H.S., Kalubarme, R.S., Park, C.N., Kim, J. and Park, C.J., Nanoscale 6, 10071 (2014).Google Scholar
Talapatra, S., Kar, S., Pal, S.K., Vajtai, R., Cl, L., Victor, P., Shaijumon, M.M., Kaur, S., Nalamasu, O. and Ajayan, P.M., Nat. Nanotechnol. 1, 112 (2006).Google Scholar
Shi, R., Jiang, L. and Pan, C.X., Soft Nanoscience Letters 1, 11(2011).Google Scholar
Sun, L., Fu, Y., Tian, C.G., Yang, Y., Wang, L., Yin, J., Ma, J., Wang, R.H. and Fu, H.G., Chem. Sus. Chem. 7, 1637 (2014).Google Scholar
Yang, S.H., Shin, W.H., Lee, J.W., Kim, H.S. and Kim, J.K.K.Y.K., Appl. Phys. Lett. 90, 013103 (2007).Google Scholar
Chen, Y.G., Wang, J.J., Liu, H., Li, R.Y., Sun, X.L., Ye, S.Y. and Knights, S., Electrochem. Commun. 11, 2071 (2009).CrossRefGoogle Scholar
Liao, L.M. and Pan, C.X., Soft Nanoscience Letters 1,16 (2011).Google Scholar
Zhao, J.J., Park, H., Han, J. and Lu, J.P., J. Phys. Chem. B 108, 4227 (2004).Google Scholar
Cao, B., Zhang, B., Jiang, X.D., Zhang, Y.P. and Pan, C.X., J. Power Sources 196, 7868 (2011).Google Scholar
Bao, Q.L., Bao, S.J., Li, C.M., Qi, X., Pan, C.X., Zang, J.F., Lu, Z.S., Li, Y.B., Tang, D.Y., Zhang, S. and Lian, K., J. Phys. Chem. C 112, 3612 (2008).CrossRefGoogle Scholar
Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I. and Seal, S., Prog. Mater. Sci. 56, 1178 (2011).Google Scholar
Pumera, M., Energy Environ. Sci. 4,668 (2011).Google Scholar
Yang, S., Lohe, M.R., Müllen, K. and Feng, X.L., Adv. Mater. 28, 6213 (2016).Google Scholar
Gong, Y.N., Ping, Y.J., Li, D.L., Luo, C.Z., Ruan, X.F., Fu, Q. and Pan, C.X., Appl. Surf. Sci. 397, 213 (2017).Google Scholar
Wang, X.R., Li, X.L., Zhang, L., Yoon, Y., Weber, P.K., Wang, H.L., Guo, J. and Dai, H.J., Science 324, 768 (2009).Google Scholar
Gong, Y.N., Li, D.L., Fu, Q. and Pan, C.X., Prog. Nat. Sci. Mater. 25, 379 (2015).Google Scholar
Li, D.L., Yu, C.Z., Wang, M.S., Zhang, Y.P. and Pan, C.X., RSC Adv. 4, 55394 (2014).CrossRefGoogle Scholar
Supplementary material: File

Gong supplementary material

Table S1

Download Gong supplementary material(File)
File 42.5 KB