Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-21T15:49:40.538Z Has data issue: false hasContentIssue false

Analytic Modeling of Nonlinear Current Conduction in Access Regions of III-Nitride HEMTs

Published online by Cambridge University Press:  05 January 2018

Kexin Li*
Affiliation:
New York University, Brooklyn, NY, United States
Shaloo Rakheja
Affiliation:
New York University, Brooklyn, NY, United States
*
*(Email: kl2646@nyu.edu)
Get access

Abstract

The transconductance degradation caused by the non-linear resistance of access regions in III-nitride high electron-mobility transistors (HEMTs) is mainly responsible for limiting the RF linearity of the transistor. In this paper, we use Landauer’s transmission theory to develop an analytic electrothermal current-voltage (I-V) model of access regions in III-nitride HEMTs. With only 12 parameters, most of which have a physical origin and can be obtained through experimental calibration, the model is able to correctly predict the I-V behavior in access regions from the drift-diffusive to the quasi-ballistic transport regimes. Model accuracy is demonstrated by comparing the results against experimental and numerical hydrodynamic simulations of ungated transmission line structures with length scales ranging from few 10’s of nanometers to 10’s of micrometers.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pengelly, R. S., Wood, S. M., Milligan, J. W., Sheppard, S. T., and Pribble, W. L., IEEE Trans. Microw. Theory Tech. 60(6), 17641783 (2012).Google Scholar
Ahmed, A., Islam, S. S., and Anwar, A., IEEE Trans. Microw. Theory Tech. 49(9), 15181524 (2001).Google Scholar
Radhakrishna, U., Ph.D. dissertation, MIT (2016).Google Scholar
Eastman, L. F., Tilak, V., Smart, J., Green, B. M., Chumbes, E. M., Dimitrov, R., Kim, H., Ambacher, O. S., Weimann, N., Prunty, T. et al., IEEE Trans. Electron Devices. 48(3), 479485 (2001).CrossRefGoogle Scholar
Trew, R. J., Liu, Y., Bilbro, L., Kuang, W., Vetury, R., and Shealy, J. B., IEEE Trans. Microw. Theory Tech. 54(5), 20612067 (2006).Google Scholar
Ghosh, S., Ahsan, S. A., Chauhan, Y. S., and Khandelwal, S., IEEE EDSSC. 247250 (2016).Google Scholar
Shur, M. S., IEEE Electron Device Lett. 23(9), 511513 (2002).Google Scholar
Rakheja, S., Lundstrom, M. S., and Antoniadis, D. A., IEEE Trans. Electron Devices, 62(9), 27862793 (2015).Google Scholar
Radhakrishna, U., Wei, L., Lee, D.-S., Palacios, T., and Antoniadis, D., IEEE IEDM, 13–6 (2012).Google Scholar
Blakemore, J., Solid-State Electron. 25(11), 10671076 (1982).CrossRefGoogle Scholar
Shur, M., Gelmont, B., and Khan, M. A., J. Electron. Mater. 25(5), 777785 (1996).Google Scholar
Benbakhti, B., Soltani, A., Kalna, K., Rousseau, M., and De Jaeger, J.-C., IEEE Trans. Electron Devices, 56(10), 21782185 (2009).CrossRefGoogle Scholar