Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-zzcdp Total loading time: 0.179 Render date: 2021-11-28T00:51:59.149Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Theoretical prediction of piezoelectric property of new LiNbO3-type compound AlTlO3

Published online by Cambridge University Press:  04 February 2019

Kaoru Nakamura*
Affiliation:
Central Research Institute of Electric Power Industry, 2-6-1, Nagasaka, Yokosuka, Kanagawa, Japan
Toshiharu Ohnuma
Affiliation:
Central Research Institute of Electric Power Industry, 2-6-1, Nagasaka, Yokosuka, Kanagawa, Japan
Get access

Abstract

By using systematic first-principles calculation, we found that AlTlO3 compound of LiNbO3 structure shows large piezoelectric constants e33 of 10.7 C/m2 and d33 of 56.7 pC/N. These piezoelectric constants are approximately six times larger than those of LiNbO3. AlTlO3 is predicted to be stabilized above 7 GPa. On the other hand, the calculated dielectric constant ε33 shows diverged behavior around 2 GPa. This result indicates that AlTlO3 can be quenchable. Decomposition of the predicted piezoelectric constant revealed that the large piezoelectricity of AlTlO3 originates from the Tl displacement in accordance with external perturbation, which drives the ferroelectric soft mode of the corresponding paraelectric phase. However, the energy difference between the ferroelectric and paraelectric phases was small, approximately 1 meV/f.u. These insights suggest that fluctuation between ferroelectric and paraelectric phases causes large piezoelectricity in AlTlO3.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Megaw, H. D., Acta Crystallogr., A24, 583 (1968).CrossRefGoogle Scholar
Lebedev, A. I., Phys. Sol. State, 51, 362 (2009).CrossRefGoogle Scholar
Parlinski, K., Li, Z. Q. and Kawazoe, Y., Phys. Rev. B, 61, 272 (2000).CrossRefGoogle Scholar
Smolenskii, G. A., Krainik, N. N., Khuchua, N. P., Zhdanova, V. V. and Mylnikova, I. E., Basic Sol. State Phys., 13, 309 (1966).CrossRefGoogle Scholar
Ahart, M., Somayazulu, M., Cohen, R. E., Ganesh, P., Dera, P., Mao, H., Hemley, R. J., Liermann, P. and Wu, Z., Nature 451, 545 (2008).CrossRefGoogle Scholar
Inaguma, Y., Yoshida, M. and Katsumata, T., J. Am. Chem. Soc., 130, 6704 (2008).CrossRefGoogle Scholar
Nakayama, M., Nogami, M., Yoshida, M., Katsumata, T. and Inaguma, Y., Adv. Mater., 22, 2579 (2010).CrossRefGoogle Scholar
Nakamura, K., Higuchi, S. and Ohnuma, T., J. Appl. Phys., 111, 033522 (2012).CrossRefGoogle Scholar
de Jong, M., Chen, W., Geerlings, H., Asta, M. and Persson, K. A., Scientific Data 2, 150053 (2015).CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
Blöchl, P. E., Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
Perdew, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett., 78, 1396 (1997).CrossRefGoogle Scholar
Wu, X., Vanderbilt, D. and Hamann, D. R., Phys. Rev. B, 72, 035105 (2005).CrossRefGoogle Scholar
Momma, K. and Izumi, F. J. Appl. Crystallogr., 41, 653 (2008).CrossRefGoogle Scholar
Togo, A., Oba, F. and Tanaka, I., Phys. Rev. B, 78, 134106 (2008).CrossRefGoogle Scholar
Oganov, A. R. and Glass, C. W., J. Chem. Phys., 124, 244704 (2006).CrossRefGoogle Scholar
Yamanaka, T., Komatsu, Y., Sugahara, M. and Nagai, T., Am. Min., 90, 1301 (2005)CrossRefGoogle Scholar
Inaguma, Y., Aimi, A., Shirako, Y., Sakurai, D., Mori, D., Kohitani, H., Akaogi, M. and Nakayama, M., J. Am. Chem. Soc., 136, 2748 (2014).CrossRefGoogle Scholar
Ko, J. and Prewitt, C. T., Phys. Chem. Min., 15, 355 (1988).CrossRefGoogle Scholar
Kushibiki, J., Takanaga, I., Arakawa, M. and Sannomiya, T., IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 46, 1315 (1999).CrossRefGoogle Scholar
Viskov, A. S., Zubova, E. V., Burdina, K. P. and Venevtsev, Y. N., Sov. Phys. Crystallogr., 15, 932 (1971).Google Scholar
Friedrich, M., Riefer, A., Sanna, S., Schmidt, W. G. and Schindlmayr, A., J. Phy.: Cond. Matter, 27, 385402 (2015)Google Scholar
Wu, Z. and Cohen, R. E., Phys. Rev. Lett., 95, 037601 (2005).CrossRefGoogle Scholar
Nakamura, K., Higuchi, S. and Ohnuma, T., J. Appl. Phys., 119, 114102 (2016).CrossRefGoogle Scholar
Ghosez, P., Michenaud, J.-P. and Gonze, X., Phys. Rev. B, 58, 6224 (1998).CrossRefGoogle Scholar
Sághi-Szabó, G. and Cohen, R. E., Phys. Rev. Lett., 80, 4321 (1998).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Theoretical prediction of piezoelectric property of new LiNbO3-type compound AlTlO3
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Theoretical prediction of piezoelectric property of new LiNbO3-type compound AlTlO3
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Theoretical prediction of piezoelectric property of new LiNbO3-type compound AlTlO3
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *