Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-t82dr Total loading time: 0.188 Render date: 2021-12-06T14:53:33.185Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Synthesis and Characterization of 2D-Graphene Oxide-Metal Hybrid Systems with Increased Solubility

Published online by Cambridge University Press:  10 June 2019

Hadi Kelani
Affiliation:
Department of Chemistry, Towson University 8000 York Road, Towson, MD21252, U.S.A.
Shelby Weatherbee
Affiliation:
Department of Chemistry, Towson University 8000 York Road, Towson, MD21252, U.S.A.
Stephen Blama
Affiliation:
Department of Chemistry, Towson University 8000 York Road, Towson, MD21252, U.S.A.
Mary Sajini Devadas*
Affiliation:
Department of Chemistry, Towson University 8000 York Road, Towson, MD21252, U.S.A.
*
*Corresponding Author Email: mdevadas@towson.edu
Get access

Abstract

Graphene oxide serves as a precursor to various technologies, which include batteries, biosensors, solar cells, and supercapacitors. Gold nanoparticles exhibit excellent electrochemical and photophysical properties, allowing for electronic absorption and the ability to absorb light energy at the plasmonic wavelength. Palladium nanoparticles are highly sensitive and functional in room temperature, making it an ideal metal for catalytic applications. We report the synthesis of functional graphene oxide from graphite flakes followed by the insertion of gold and palladium nanoparticles through an oleylamine ligand. In this report, the fermi level of graphene oxide (GOx), gold-graphene oxide (Au-GOx), and palladium-graphene oxide (Pd-GOx) was shown to be effectively controlled. Additionally, each system showed complete solubility in ethanol and in the case of Au-GOx, enhanced solubility was seen in tetrahydrofuran as well.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lightcap, I.V., Kosel, T.H., Kamat, P.V., Nano Letters, 10, 577-583 (2010).CrossRefGoogle Scholar
Neklyudov, V.V., Khafizov, N.R., Sedov, I.A., Dimiev, A.M., Physical Chemistry Chemical Physics, 19, 17000-17008 (2017).CrossRefGoogle Scholar
Huang, X., El-Sayed, M.A., Journal of Advanced Research, 1, 13-28 (2010).CrossRefGoogle Scholar
Eustis, S., El-Sayed, M.A., Chemical Society Reviews, 35, 209-217 (2006).CrossRefGoogle Scholar
Shao, L., Huang, X., Teschner, D., Zhang, W., ACS Catalysis, 4, 2369-2373 (2014).CrossRefGoogle Scholar
Olkhov, R.V., Shaw, A.M., RSC Advances, 4, 31678-31684 (2014).CrossRefGoogle Scholar
Turcheniuk, K., Boukherroub, R., Szunerits, S., Journal of Materials Chemistry B, 3 (2015) 4301-4324.CrossRefGoogle Scholar
Chen, X., Wu, G., Chen, J., Chen, X., Xie, Z., Wang, X., Journal of the American Chemical Society, 133, 3693-3695 (2011).CrossRefGoogle Scholar
Sanger, A., Jain, P.K., Mishra, Y.K., Chandra, R., Sensors and Actuators B: Chemical, 242, 694-699 (2017).CrossRefGoogle Scholar
Erami, R.S., Díaz-García, D., Prashar, S., Rodríguez-Diéguez, A., Fajardo, M., Amirnasr, M., Gómez-Ruiz, S., Catalysts, 7, 76 (2017).CrossRefGoogle Scholar
Liu, Y., Stradins, P., Wei, S.- H., Science Advances, 2 , e1600069 (2016).Google Scholar
Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., Tour, J.M., ACS Nano, 4, 4806-4814 (2010).CrossRefGoogle Scholar
Hussain, N.G., , A.; Sarma, R. K.; Sharma, P.; Barras, A.; Boukherroub, R.; Saikia, R.; Sengupta, P.; Das, M.R., ChemPlusChem, 79, 1774-1784 (2014).Google Scholar
Devadas, M.S., Kwak, K., Park, J.-W., Choi, J.-H., Jun, C.-H., Sinn, E., Ramakrishna, G., Lee, D., The Journal of Physical Chemistry Letters, 1, 1497-1503 (2010).CrossRefGoogle Scholar
Katoh, R.S., , K.; Furube, A.; Kotani, M.; Tokumaru, K., J. Phys. Chem. C, 113 (2009) 2961-2965.CrossRefGoogle Scholar
Radich, J.G., Kamat, P.V., ACS Nano, 7, 5546-5557 (2013).CrossRefGoogle Scholar
Lian, P., Zhu, X., Liang, S., Li, Z., Yang, W., Wang, H., Electrochimica Acta, 55, 3909-3914 (2010).CrossRefGoogle Scholar
Nguyen, K.C., Advances in Natural Sciences: Nanoscience and Nanotechnology, 3 , 045008 (2012).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Synthesis and Characterization of 2D-Graphene Oxide-Metal Hybrid Systems with Increased Solubility
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Synthesis and Characterization of 2D-Graphene Oxide-Metal Hybrid Systems with Increased Solubility
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Synthesis and Characterization of 2D-Graphene Oxide-Metal Hybrid Systems with Increased Solubility
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *