Skip to main content Accessibility help
×
Home
Hostname: page-component-65dc7cd545-54nbv Total loading time: 0.171 Render date: 2021-07-24T15:56:13.712Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Sonochemically Synthesized ZnO Nanostructured Piezoelectric Layers for Self-Powered Sensor Applications

Published online by Cambridge University Press:  11 February 2019

Fahmida Alam
Affiliation:
Department of Electrical &Computer Engineering, Florida International University, Miami, FL33174, U.S.A.
Sadegh Mehdi Aghaei
Affiliation:
Department of Electrical &Computer Engineering, Florida International University, Miami, FL33174, U.S.A.
Ahmed Hasnain Jalal
Affiliation:
Department of Electrical &Computer Engineering, Florida International University, Miami, FL33174, U.S.A.
Nezih Pala
Affiliation:
Department of Electrical &Computer Engineering, Florida International University, Miami, FL33174, U.S.A.
Corresponding
E-mail address:
Get access

Abstract

In this paper, we report on the flexible thin film piezoelectric nanogenerators based on two-dimensional ZnO nanoflakes (NFs) directly deposited onto flexible polyethylene terephthalate (PET) using a simple sonochemical reaction in aqueous solution at room temperature. Our sonochemical synthesis method is a rapid, highly stable, low-cost, and reproducible method, which can be performed at ambient conditions. These advantages of the sonochemical method allow the synthesis of many different ZnO nanostructures. The structural investigations using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) indicated that the ZnO NFs grew with high level of crystallinity and without any thermal damage on the substrates. The fabrication of these device provides a promising solution for developing flexible and self-powered electronic devices particularly wearable and implantable sensors. This ZnO-NFs based nanogenerator provides 62 mV of potential and significant reproducibility having with lower p-value (0.0212).

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below.

References

Tian, B., Zheng, X., Kempa, T. J., Fang, Y., Yu, N., Yu, G., Huang, J., and Lieber, C. M., Nature 449, 885 (2007).CrossRefGoogle Scholar
Li, Z., and Wang, Z. L., Adv. Mater. 23, 84 (2011).CrossRefGoogle Scholar
Wang, Z. L. and Song, J. H., Science 312, 242 (2006).CrossRefGoogle ScholarPubMed
Wang, Z. L., Yang, R., Zhou, J., Qin, Y., Xu, C., Hu, Y., and Xu, S., Mater. Sci. Eng. 70, 320 (2010).CrossRefGoogle Scholar
Alam, F., Sinha, R., Jalal, A. H., Manickam, P., Vabbina, P. K., Bhansali, S. and Pala, N., ECS Trans., 80, 1287-1294 (2017).CrossRefGoogle Scholar
Alam, F., Jalal, A. H., Sinha, R., Umasankar, Y., Bhansali, S. and Pala, N., MRS Adv., 3, 277282 (2018).CrossRefGoogle Scholar
Vabbina, P. K., Karabiyik, M., Al-Amin, C., and Pala, N., Part. Part. Syst. Charact. 31, 190-194(2014).CrossRefGoogle Scholar
Alam, F., Jalal, A. H., Sinha, R., Umasankar, Y., Bhansali, S. and Pala, N., SPIE Def. + Comm. Sens., 10639,106392O-1106392O-6 (2018).Google Scholar
Calzolari, A., and Nardelli, M. B., Sci. Rep. 3, 2999 (2013).CrossRefGoogle Scholar
Al-Ruqeishi, M. S., Mohiuddin, T., Al-Habsi, B., Al-Ruqeishi, F., Al-Fahdi, A., and Al-Khusaibi, A., Arabian J. Chem., 2017.Google Scholar
Shin, S. H., Kwon, Y. H., Lee, M. H., Jung, J. Y., and Seol, J. H., Nanoscale 8, 1314-21 (2016).CrossRefGoogle Scholar
Gullapalli, H., Vemuru, V. S. M., Kumar, A., Mendez, A. B., Vajtai, R., Terrones, M., Nagarajaiah, S. and Ajayan, P. M., small 15, 1641-46 (2010)CrossRefGoogle Scholar
Didomenico, A. and Nussbaum, M. A., Ergonomics, 46, 1531-48 (2010).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Sonochemically Synthesized ZnO Nanostructured Piezoelectric Layers for Self-Powered Sensor Applications
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Sonochemically Synthesized ZnO Nanostructured Piezoelectric Layers for Self-Powered Sensor Applications
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Sonochemically Synthesized ZnO Nanostructured Piezoelectric Layers for Self-Powered Sensor Applications
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *