Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-dwt4q Total loading time: 0.199 Render date: 2021-06-15T20:48:40.379Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Article contents

Polarization switching in ferroelectric thin film induced by a single-period terahertz pulse

Published online by Cambridge University Press:  26 February 2018

Elena Mishina
Affiliation:
Moscow Technological University (MIREA), Vernadsky Ave. 78, 119454, Moscow, Russia.
Kirill Grishunin
Affiliation:
Moscow Technological University (MIREA), Vernadsky Ave. 78, 119454, Moscow, Russia.
Vladislav Bilyk
Affiliation:
Moscow Technological University (MIREA), Vernadsky Ave. 78, 119454, Moscow, Russia.
Natalia Sherstyuk
Affiliation:
Moscow Technological University (MIREA), Vernadsky Ave. 78, 119454, Moscow, Russia.
Alexander Sigov
Affiliation:
Moscow Technological University (MIREA), Vernadsky Ave. 78, 119454, Moscow, Russia.
Vladimir Mukhortov
Affiliation:
Southern Scientific Center of Russian Academy of Sciences, Chehova st. 41, Rostov-on-Don, 344006, Russia.
Andrey Ovchinnikov
Affiliation:
Joint Institute for High Temperatures of Russian Academy of Sciences (JIHT) Izhorskaya st. 13 Bd.2, 125412, Moscow, Russia.
Alexey Kimel
Affiliation:
Moscow Technological University (MIREA), Vernadsky Ave. 78, 119454, Moscow, Russia. Radboud University Nijmegen, Institute for Molecules and Materials, 6525 AJ, Nijmegen, The Netherlands
Corresponding
E-mail address:
Get access

Abstract

We report here an experimental study of ultrafast response of the dielectric polarization in (Ba0.8Sr0.2)TiO3 thin films to a strong electric field of a nearly single-cycle THz pulse. The phenomenon of Second Harmonic Generation (SHG) is used as a probe of the polarization in the terahertz pump-optical probe experiment. SHG loops for THz pulses of different amplitudes were obtained. The SHG response is modelled assuming that the ferroelectric material is split into 180-degree domains. It is shown that intuitive model based on forced harmonic oscillator does not fully describe to the observed ultrafast ferroelectric response

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below.

References

Tagantsev, A. K., Stolichnov, I., Setter, N., Cross, J. S., and Tsukada, M., Phys. Rev. B 66, 214109 (2002).CrossRefGoogle Scholar
Li, J., Nagaraj, B., Liang, H., Cao, W., Lee, C. H., and Ramesh, R., Appl. Phys. Lett. 84, 1174 (2004).CrossRefGoogle Scholar
Baierl, S., Hohenleutner, M., Kampfrath, T., Zvezdin, A. K., Kimel, A. V., Huber, R., and Mikhaylovskiy, R. V., Nat. Photonics 10, 715 (2016).CrossRefGoogle Scholar
Grishunin, K. A., Ilyin, N. A., Sherstyuk, N. E., Mishina, E. D., Kimel, A., Mukhortov, V. M., Ovchinnikov, A. V., Chefonov, O. V., and Agranat, M. B., Sci. Rep. 7, 687 (2017).CrossRefGoogle Scholar
Mishina, E. D., Sherstyuk, N. E., Barskiy, D. R., Sigov, A. S., Golovko, Y. I., Mukhorotov, V. M., De Santo, M., and Rasing, T., J. Appl. Phys. 93, 6216 (2003).CrossRefGoogle Scholar
Fiebig, M., Pavlov, V. V., and Pisarev, R. V., J. Opt. Soc. Am. B 22, 96 (2005).CrossRefGoogle Scholar
Mishina, E. D., Misuryaev, T. V., Sherstyuk, N. E., Lemanov, V. V., Morozov, A. I., Sigov, A. S., and Rasing, T., Phys. Rev. Lett. 85, 3664 (2000).CrossRefGoogle Scholar
Mishina, E. D., Morozov, A. I., Sigov, A. S., Sherstyuk, N. E., Aktsipetrov, O. A., Lemanov, V. V, and Rasing, T., J. Exp. Theor. Phys. 94, 552 (2002).CrossRefGoogle Scholar
Sheu, Y. M., Trugman, S. A., Yan, L., Jia, Q. X., Taylor, A. J., and Prasankumar, R. P., Nat. Commun. 5, 5832 (2014).CrossRefGoogle Scholar
Miyamoto, T., Yada, H., Yamakawa, H., and Okamoto, H., Nat. Commun. 4, 2586 (2013).CrossRefGoogle Scholar
Yamakawa, H., Miyamoto, T., Morimoto, T., Yada, H., Kinoshita, Y., Sotome, M., Kida, N., Yamamoto, K., Iwano, K., Matsumoto, Y., Watanabe, S., Shimoi, Y., Suda, M., Yamamoto, H. M., Mori, H., and Okamoto, H., Sci. Rep. 6, 20571 (2016).CrossRefGoogle Scholar
Mankowsky, R., Von Hoegen, A., Först, M., and Cavalleri, A., Phys. Rev. Lett. 118, (2017).Google Scholar
Sigov, A. S., Mishina, E. D., and Mukhortov, V. M., Phys. Solid State 52, 762 (2010).CrossRefGoogle Scholar
Vicario, C., Jazbinsek, M., Ovchinnikov, A. V, Chefonov, O. V, Ashitkov, S. I., Agranat, M. B., and Hauri, C. P., Opt. Express 23, 4573 (2015).CrossRefGoogle Scholar
Shirokov, V. B., Biryukov, S. V., Mukhortov, V. M., and Yuzyuk, Y. I., Tech. Phys. 56, 1175 (2011).CrossRefGoogle Scholar
Kazantseva, E. V and Maimistov, A. I., Quantum Electron. 30, 623 (2000).CrossRefGoogle Scholar
Kazantseva, E. V., Maimistov, A. I., and Caputo, J.-G., Phys. Rev. E 71, 56622 (2005).CrossRefGoogle Scholar
Grübel, S., Johnson, J. A., Beaud, P., Dornes, C., Ferrer, A., Haborets, V., Huber, L., Huber, T., Kohutych, A., Kubacka, T., Kubli, M., Mariager, S. O., Rittmann, J., Saari, J. I., Vysochanskii, Y., Ingold, G., and Johnson, S. L., arXiv 1 (2016).Google Scholar
Shirokov, V. B., Yuzyuk, Y. I., Kalinchuk, V. V., and Lemanov, V. V., Phys. Solid State 55, 773 (2013).CrossRefGoogle Scholar
Shirokov, V. B., Shakhovoy, R. A., Razumnaya, A. G., and Yuzyuk, Y. I., J. Appl. Phys. 118, 24101 (2015).CrossRefGoogle Scholar
Mishina, E. D., Sherstyuk, N. E., Barskiy, D. R., Sigov, A. S., Golovko, Y. I., Mukhorotov, V. M., De Santo, M., and Rasing, T., J. Appl. Phys. 93, 6216 (2003).CrossRefGoogle Scholar
Jiang, A. Q., Lee, H. J., Hwang, C. S., and Scott, J. F., Adv. Funct. Mater. 22, 192 (2012).CrossRefGoogle Scholar
Dolino, G., Lajzerowicz, J., and Vallade, M., Phys. Rev. B 2, 2194 (1970).CrossRefGoogle Scholar
Mishina, E., Sherstyuk, N., Golovko, Y., Muhortov, V., and Sigov, A., Integr. Ferroelectr. 92, 65 (2007).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Polarization switching in ferroelectric thin film induced by a single-period terahertz pulse
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Polarization switching in ferroelectric thin film induced by a single-period terahertz pulse
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Polarization switching in ferroelectric thin film induced by a single-period terahertz pulse
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *