Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T13:42:22.607Z Has data issue: false hasContentIssue false

On-line Monitoring of Nanoparticle Synthesis by Laser-Induced Breakdown Spectroscopy in Vacuum

Published online by Cambridge University Press:  19 December 2016

Jessica Picard
Affiliation:
NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, F-91191 Gif sur Yvette cedex, France
Jean-Baptiste Sirven
Affiliation:
DEN – Service d’Etudes Analytiques et de Réactivité des Surfaces (SEARS), CEA, Université Paris-Saclay, F-91191, Gif sur Yvette cedex, France
Olivier Sublemontier*
Affiliation:
NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, F-91191 Gif sur Yvette cedex, France
Get access

Abstract

We propose a new technique suitable for on-line monitoring of gas phase synthesis of nanoparticles. It is based on aerodynamic focusing of nanoparticles followed by Laser-Induced Breakdown Spectroscopy (LIBS) under vacuum. The laser crosses a beam of particles at low pressure so that the plasma-produced photons to be analyzed are emitted only from the particles. Unlike previous experiments, the background from interaction with the gaseous component is totally eliminated from the collected spectra. Vacuum allows also for easier spectra collection in the UV range. Moreover, as the nanoparticle beam is highly collimated, the optical interface windows are not obstructed by particle deposition and the system can be kept running for hours.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Miziolek, A. W., Palleschi, V., Scheschter, I., Laser-induced breakdown spectroscopy (LIBS). Fundamentals and applications (Cambridge University Press, Cambridge, 2006).Google Scholar
Amodeo, T., Dutouquet, C., Tenegal, F., Guizard, B., Maskrot, H., Le Bihan, O., Fréjafon, E., Spectrochim. Acta Part B At. Spectrosc. 63 (2008) 11831190. doi:10.1016/j.sab.2008.09.005.Google Scholar
Jayne, J.T., Leard, D.C., Zhang, X., Davidovits, P., Smith, K.A., Kolb, C.E., Worsnop, D.R., Aerosol Sci. Technol. 33 (2000) 3741.Google Scholar
Lindblad, A., Söderström, J., Nicolas, C., Robert, E., Miron, C., Rev. Sci. Instrum. 84 (2013) 113105. doi:10.1063/1.4829718.CrossRefGoogle Scholar
Sublemontier, O., Nicolas, C., Aureau, D., Patanen, M., Kintz, H., Liu, X., Gaveau, M.-A., Le Garrec, J.-L., Robert, E., Barreda, F.-A., Etcheberry, A., Reynaud, C., Mitchell, J.B., Miron, C., J. Phys. Chem. Lett. 5 (2014) 33993403. doi:10.1021/jz501532c.Google Scholar
Barreda, F.-A., Nicolas, C., Sirven, J.-B., Ouf, F.-X., Lacour, J.-L., Robert, E., Benkoula, S., Yon, J., Miron, C., Sublemontier, O., Sci. Rep. 5 (2015) 15696. doi:10.1038/srep15696.Google Scholar
Sublemontier, O., Kintz, H., Lacour, F., Kona Powder Particle J. 29 (2011) 236250.CrossRefGoogle Scholar