Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-66nw2 Total loading time: 0.312 Render date: 2021-12-01T16:41:58.866Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Novel Enzymatically Synthesized Substituted Polyaniline with High Conjugation and Conductivity

Published online by Cambridge University Press:  05 March 2018

Ferdinando F. Bruno*
Affiliation:
US Army Natick Soldier Research Development and Engineering Center, RDECOM, Natick, MA 01760, United States.
Ramaswamy Nagarajan
Affiliation:
Department of Plastics Engineering and Center for Advanced Materials, University of Massachusetts, Lowell, Lowell, MA 01854
Weeradech Kiratitanavit
Affiliation:
Department of Plastics Engineering and Center for Advanced Materials, University of Massachusetts, Lowell, Lowell, MA 01854
Nicole Favreau-Farhadi
Affiliation:
US Army Natick Soldier Research Development and Engineering Center, RDECOM, Natick, MA 01760, United States.
Bora Yoon
Affiliation:
US Army Natick Soldier Research Development and Engineering Center, RDECOM, Natick, MA 01760, United States.
Stephen Fossey
Affiliation:
US Army Natick Soldier Research Development and Engineering Center, RDECOM, Natick, MA 01760, United States.
Manuele Bernabei
Affiliation:
ITAF, Test Flight Centre, Chemistry Dept. Pratica di Mare AFB, 00071 Pomezia (Rome), Italy (UE).
Get access

Abstract

An efficient enzymatic route for the synthesis of conducting oligomer of substituted aniline complexed with poly(sodium 4-styrenesulfonate) is presented. This polyelectrolyte assisted horseradish peroxidase catalyzed oligomerization of ortho-toluidine provides a route to synthesize water-soluble, highly conductive oligomers under acidic conditions. The UV-Vis, FTIR, thin film conductivity, molecular weight assessment and modeling studies of the oligomer/polymer complex indicate the presence of a thermally stable and electroactive oligomer with extended conjugation that was not present in similar conductive polymers (e.g. PANI). Moreover, the use of water-soluble templates provide a unique combination of properties such as high conductivity and processability. The same procedure was also implemented for the polymerization of 2,6-xylidine: however, the reaction did not occur suggesting a much more complex stereo-specificity of the enzymatic polymerization. Modeling studies were used to explain this behavior. The conductive poly(ortho-toluidine) can be used in chemiresistive sensors for the detection of humidity.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Joo, J., Epstein, A., J. Appl. Phys. Lett. 65,2278 (1994)CrossRefGoogle Scholar
MacDiarmid, A. G., Synth. Met. 84, 27(1997)Google Scholar
Chen, S. A., Hwang, G. W., J. Am. Chem. Soc. 117, 10055 (1995)CrossRefGoogle Scholar
Nguyen, M.T., Kasai, P., Miller, J.L., Macromolecules 27, 3625 (1994)CrossRefGoogle Scholar
Chen, S. A., Hwang, G. W., J. Am. Chem. Soc. 116, 7939 (1994)CrossRefGoogle Scholar
Liu, W., Kumar, J., Tripathy, S., Senecal, K. J., Samuelson, L., J. Am. Chem. Soc. 121, 71 (1999)CrossRefGoogle Scholar
Bruno, F. F., Akkara, J. A., Kaplan, D. L., Sekher, P., Marx, K. A., Tripathy, S. K., Ind. Eng. Chem. Res. 34, 4009 (1995)Google Scholar
Roy, S., Fortier, J. M., Nagarajan, R., Tripathy, S., Kumar, J., Samuelson, L. A., Bruno, F. F., Biomacromolecules 3, 93 (2002)Google Scholar
Nagarajan, S., Kumar, J., Bruno, F. F., Samuelson, L. A., Nagarajan, R., Macromolecules 41(9), 3049 (2008)CrossRefGoogle Scholar
Xu, P., Singh, A., Kaplan, D. L., Adv. Polym. Sci. 194, 285 (2006)Google Scholar
Yoon, B., Liu, S. F, Swager, T. M., Chem. Mater. 28, 5916 (2016)Google Scholar
Fossey, S. A., Bruno, F. F., Kumar, J., Samuelson, L. A., Synth. Met., 159(14), 1409 (2009)CrossRefGoogle Scholar
Gaussian 09, Revision A.2, Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., et al. . Gaussian, Inc., Wallingford CT, (2009).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Novel Enzymatically Synthesized Substituted Polyaniline with High Conjugation and Conductivity
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Novel Enzymatically Synthesized Substituted Polyaniline with High Conjugation and Conductivity
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Novel Enzymatically Synthesized Substituted Polyaniline with High Conjugation and Conductivity
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *