Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-5kt27 Total loading time: 0.386 Render date: 2021-09-25T18:19:29.370Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Nanocomposites of Hydrophobized Cellulose Nanocrystals and Polypropylene

Published online by Cambridge University Press:  05 February 2016

Blake R. Teipel
Affiliation:
Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
Ryan J. Vano
Affiliation:
Essentium Materials LLC, 5880 Imperial Loop Dr., Ste 10, College Station, Texas 77845
Bryan S. Zahner
Affiliation:
Essentium Materials LLC, 5880 Imperial Loop Dr., Ste 10, College Station, Texas 77845
Elisa M. Teipel
Affiliation:
Essentium Materials LLC, 5880 Imperial Loop Dr., Ste 10, College Station, Texas 77845
I-Cheng Chen
Affiliation:
Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
Mustafa Akbulut*
Affiliation:
Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
*
*Phone: 979-847-8766. Fax: 979-845-6446. E-mail: makbulut@tamu.edu
Get access

Abstract

Cellulose nanocrystals (CNCs) are high-strength sustainable nanomaterials, the incorporation of which to a host polymer matrix can potentially lead to nanocomposites with superior mechanical properties. However, the mismatch in surface energy of CNCs and common structural polymers is a challenge that needs to be overcome to prevent the aggregation of CNCs and ensure the robust integration of CNCs into a polymer matrix. Herein, we report an approach involving the functionalization of CNCs with maleated-anhydride polypropylene (MAPP) through diethylenetriamine (DETA) linkers to significantly enhance the compatibility between CNCs and polypropylene. Polypropylene/modified CNC nanocomposites displayed 74% and 76% increase in elastic modulus in comparison to neat polypropylene and polypropylene/untreated CNC nanocomposites, respectively. The tensile strength was also higher for nanocomposites with modified CNC than neat polypropylene, as well as nanocomposites with untreated CNCs. The tensile strength at 5.5% strain of polypropylene/modified CNC nanocomposites was 32% and 28% larger that of polypropylene and polypropylene/untreated CNC nanocomposites, respectively. Finally, such CNC-based nanocomposites have a lower density than many competitive systems resulting in opportunities to propagate this environmentally-responsible technology to nanocomposites used in additive manufacturing, automotive applications, construction materials and consumer products.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Habibi, Y.; Lucia, L. A.; Rojas, O. J.: Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chemical Reviews 2010, 110, 34793500.CrossRefGoogle ScholarPubMed
Padalkar, S.; Capadona, J. R.; Rowan, S. J.; Weder, C.; Won, Y.-H.; Stanciu, L. A.; Moon, R. J.: Natural Biopolymers: Novel Templates for the Synthesis of Nanostructures. Langmuir 2010, 26, 84978502.CrossRefGoogle ScholarPubMed
Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J.: Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 39413994.CrossRefGoogle ScholarPubMed
Alamri, H.; Low, I. M.: Characterization of epoxy hybrid composites filled with cellulose fibers and nano-SiC. Journal of Applied Polymer Science 2012, 126, E221E231.CrossRefGoogle Scholar
Cross, L., Schueneman, G., Mintz, E.: Polymer Matrix Nanocomposites via Forest Derived Nanomaterials. In TechConnect World Summit, Expo, and Showcase; U.S. Forest Service, 2012.Google Scholar
Eichhorn, S.; Dufresne, A.; Aranguren, M.; Marcovich, N.; Capadona, J.; Rowan, S.; Weder, C.; Thielemans, W.; Roman, M.; Renneckar, S.; Gindl, W.; Veigel, S.; Keckes, J.; Yano, H.; Abe, K.; Nogi, M.; Nakagaito, A.; Mangalam, A.; Simonsen, J.; Benight, A.; Bismarck, A.; Berglund, L.; Peijs, T.: Review: current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science 2010, 45, 133.CrossRefGoogle Scholar
Pullawan, T.; Wilkinson, A. N.; Eichhorn, S. J.: Influence of Magnetic Field Alignment of Cellulose Whiskers on the Mechanics of All-Cellulose Nanocomposites. Biomacromolecules 2012, 13, 25282536.CrossRefGoogle ScholarPubMed
Kloser, E.; Gray, D. G.: Surface Grafting of Cellulose Nanocrystals with Poly(ethylene oxide) in Aqueous Media. Langmuir 2010, 26, 1345013456.CrossRefGoogle Scholar
Elazzouzi-Hafraoui, S.; Nishiyama, Y.; Putaux, J.-L.; Heux, L.; Dubreuil, F.; Rochas, C.: The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose. Biomacromolecules 2007, 9, 5765.CrossRefGoogle ScholarPubMed
Teipel, B. R.; Grunlan, J.: Synergy in Epoxy Nanocomposites with Cellulose Nanocrystals and Boehmite. Green Materials 2014.CrossRefGoogle Scholar
Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A.: Carbon Nanotubes–the Route Toward Applications. Science 2002, 297, 787792.CrossRefGoogle Scholar
Ebbesen, T. W.; Ajayan, P. M.: Large-scale synthesis of carbon nanotubes. Nature 1992, 358, 220222.CrossRefGoogle Scholar
Geim, A. K.; Novoselov, K. S.: The rise of graphene. Nat Mater 2007, 6, 183191.CrossRefGoogle ScholarPubMed
Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S.: Graphene-based composite materials. Nature 2006, 442, 282286.CrossRefGoogle ScholarPubMed
Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A.: Nanocelluloses: A New Family of Nature-Based Materials. Angewandte Chemie International Edition 2011, 50, 54385466.CrossRefGoogle ScholarPubMed
Gindl, W.; Keckes, J.: All-cellulose nanocomposite. Polymer 2005, 46, 1022110225.CrossRefGoogle Scholar
Kinnane, C.; Such, G.; Caruso, F.: Tuning the Properties of Layer-by-Layer Assembled Poly(acrylic acid) Click Films and Capsules. Macromolecules 2011, 44, 11941202.CrossRefGoogle Scholar
Brittain, W. J.; Minko, S.: A structural definition of polymer brushes. Journal of Polymer Science Part A: Polymer Chemistry 2007, 45, 35053512.CrossRefGoogle Scholar
Nelson, K.; Retsina, T.: Innovative nanocellulose process breaks the cost barrier. TAPPI JOURNAL 2014, 13, 1923.Google Scholar
Zhang, Z.; Wu, Q.; Song, K.; Ren, S.; Lei, T.; Zhang, Q.: Using Cellulose Nanocrystals as a Sustainable Additive to Enhance Hydrophilicity, Mechanical and Thermal Properties of Poly(vinylidene fluoride)/Poly(methyl methacrylate) Blend. ACS Sustainable Chemistry & Engineering 2015, 3, 574582.CrossRefGoogle Scholar
Cui, L.; Paul, D. R.: Evaluation of amine functionalized polypropylenes as compatibilizers for polypropylene nanocomposites. Polymer 2007, 48, 16321640.CrossRefGoogle Scholar
Ehrenstein, G.: Overview of selected polymeric materials. Polymeric Materials, Carl Hanser Verlag, Munich 2001, 241.CrossRefGoogle Scholar
Iyer, K. A.; Torkelson, J. M.: Sustainable Green Hybrids of Polyolefins and Lignin Yield Major Improvements in Mechanical Properties When Prepared via Solid-State Shear Pulverization. ACS Sustainable Chemistry & Engineering 2015.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nanocomposites of Hydrophobized Cellulose Nanocrystals and Polypropylene
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Nanocomposites of Hydrophobized Cellulose Nanocrystals and Polypropylene
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Nanocomposites of Hydrophobized Cellulose Nanocrystals and Polypropylene
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *