Skip to main content Accessibility help
×
Home
Hostname: page-component-5cfd469876-9knjr Total loading time: 0.19 Render date: 2021-06-24T07:25:33.997Z Has data issue: false Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Article contents

Investigation of exotic electronic properties on rare-earth & actinide compounds under high pressure

Published online by Cambridge University Press:  20 May 2016

Fuminori Honda
Affiliation:
Institute for Materials Research, Tohoku University, Oarai, Ibaraki, 311-1313, Japan
Dexin Li
Affiliation:
Institute for Materials Research, Tohoku University, Oarai, Ibaraki, 311-1313, Japan
Keigo Okauchi
Affiliation:
Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
Yoshiya Homma
Affiliation:
Institute for Materials Research, Tohoku University, Oarai, Ibaraki, 311-1313, Japan
Ai Nakamura
Affiliation:
Institute for Materials Research, Tohoku University, Oarai, Ibaraki, 311-1313, Japan
Dai Aoki
Affiliation:
Institute for Materials Research, Tohoku University, Oarai, Ibaraki, 311-1313, Japan
Corresponding
E-mail address:
Get access

Abstract

We have synthesized and investigated electronic properties of several non-centrosymmetric actinide compounds, which do not have an inversion center in the crystal structure “globally” or “locally”, under high pressure. The Néel temperature of an antiferromagnet UIrSi3 with “globally” non-centrosymmetric structure increases with increasing pressure at a rate of 2.5 K/GPa up to 5 GPa. On the other hand, T Ns of U2Rh3Si5 and U2Ir3Si5, which are “locally” non-centrosymmetric compounds, decrease with -1 K/GPa and -0.5 K/GPa with increasing pressure, respectively. Here, U2Ir3Si5 is a new antiferromagnet crystallizing in the U2Co3Si5-type of orthorhombic structure. Below T N = 36.5 K, U2Ir3Si5 shows magnetic order-order transition at T 0 = 26.1 K with a first-order nature. Electrical resistivity in U2Ir3Si5 shows semiconducting-like behavior due to the formation of the super-zone gap in the antiferromagnetic state. T N and T 0 as well as semi-conducting-like behavior in resistivity are suppressed by external pressure.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

Yu, X. Z., Onose, Y., Kanazawa, N., Park, J. H., Han, J. H., Matsui, Y., Nagaosa, N., and Tokura, Y., Nature 465, 901 (2010).CrossRef
Togawa, Y., Koyama, T., Takayanagi, K., Mori, S., Kousaka, Y., Akimitsu, J., Nishihara, S., Inoue, K., Ovchinnikov, A. S., and Kishine, J., Phys. Rev. Lett. 108, 107202 (2012).CrossRef
Murakami, S., Nagaosa, N., and Zhang, S.-C., Science 301, 1348 (2003).CrossRef
Sinova, J., Culcer, D., Niu, Q., Sinitsyn, N. A., Jungwirth, T., and MacDonald, A. H., Phys. Rev. Lett. 92, 126603 (2004).CrossRef
Bauer, E. and Sigrist, M., Non-Centrosymmetric Superconductors: Introduction and Overview (Springer, Heidelberg, 2012) Lecture Notes in Physics.CrossRefGoogle Scholar
Okuda, Y., Miyauchi, Y., Ida, Y., Takeda, Y., Tonohiro, C., Oduchi, Y., Yamada, T., Dung, N. D., Matsuda, T. D., Haga, Y., Takeuchi, T., Hagiwara, M., Kindo, K., Harima, H., Sugiyama, K., Settai, R., and Ōnuki, Y., J. Phys. Soc. Jpn. 76, 044708 (2007).CrossRef
Kimura, N., Ito, K., Saitoh, K., Umeda, Y., Aoki, H., and Terashima, T., Phys. Rev. Lett. 95, 247004 (2005).CrossRef
Sugitani, I., Okuda, Y., Shishido, H., Yamada, T., Thamizhavel, A., Yamamoto, E., Matsuda, T. D., Haga, Y., Takeuchi, T., Settai, R., and Ōnuki, Y., J. Phys. Soc. Jpn. 75, 043703 (2006).CrossRef
Kawai, T., Muranaka, H., Méasson, M.-A., Shimoda, T., Doi, Y., Matsuda, T. D., Haga, Y., Knebel, G., Lapertot, G., Aoki, D., Flouquet, J., Takeuchi, T., Settai, R., and Ōnuki, Y., J. Phys. Soc. Jpn. 77, 064716 (2008).CrossRef
Honda, F., Bonalde, I., Shimizu, K., Yoshiuchi, S., Hirose, Y., Nakamura, T., Settai, R., Ōnuki, Y., Phys. Rev. B 81, 140507(R) (2010).CrossRef
Muro, Y., Eom, D., Takeda, N., and Ishikawa, M., J. Phys. Soc. Jpn. 67, 3601 (1998).CrossRef
Settai, R., Miyauchi, Y., Takeuchi, T., Levy, F., Sheikin, I., and Onuki, Y.: J. Phys. Soc. Jpn. 77, 073705 (2008).CrossRef
Méasson, M.-A., Muranaka, H., Kawai, T., Ota, Y., Sugiyama, K., Hagiwara, M., Kindo, K., Takeuchi, T., Shimizu, K., Honda, F., Settai, R., and Ōnuki, Y., J. Phys. Soc. Jpn. 78, 124713 (2009).CrossRef
Yanase, Y. and Sigrist, M., J. Phys. Soc. Jpn. 76, 124709 (2007).CrossRef
Sigrist, M., Agterberg, D. F., Fischer, M. H., Goryo, J., Loder, F., Rhim, S.-H., Maruyama, D., Yanase, Y., Yoshida, T., and Youn, S. J., J. Phys. Soc. Jpn. 83, 061014 (2014).CrossRef
Dommann, A., Hulliger, F., Siegrist, T., and Fischer, P., J. Magn. Magn. Mater. 67, 323 (1987) and T. Akazawa, H. Hidaka, H. Kotegawa, T. C. Kobayashi, T. Fujiwara, E. Yamamoto, Y. Haga, R. Settai, and Y. Ōnuki, J. Phys. Soc. Jpn. 73, 3129(2004).CrossRef
Saxena, S. S., Agarwal, P., Ahilan, K., Grosche, F. M., Hasselwimmer, R. K. W., Steiner, M. J., Pugh, E., Walker, I. R., Julian, S. R., Monthoux, P., Lonzarich, G. G., Huxley, A., Sheikin, I., Braithwaite, D. and Flouquet, J., Nature 604, 587 (2000).CrossRef
Aoki, D., Huxley, A., Ressouche, E., Braithwaite, D., Flouquet, J., Brison, J.P., Lhotel, E., Paulsen, C., Nature, 413, 613 (2001).CrossRef
Huy, N. T., Gasparini, A., de Nijs, D. E., Huang, Y., Klaasse, J. C. P., Gortenmulder, T., de Visser, A., Hamann, A., Görlach, T., and Löhneysen, H. v., Phys. Rev. Lett. 99, 067006 (2007).CrossRef
Yoshida, T., Sigrist, M., Yanase, Y., J. Phys. Soc. Jpn. 83, 013703 (2014).CrossRef
Pfleiderer, C., Rev. Mod. Phys, 81, 1551 (2009).CrossRef
Buffat, B., Chevalier, B., Czeska, B., Etourneau, J., J. Magn. Magn. Mater. 62, 53 (1986).CrossRef
Takabatake, T., Maeda, Y., Fujii, H., Ikeda, S., Nishigori, S., Fujita, T., Minami, A., Oguro, I., Sugiyama, K., Oda, K., Date, M., Physica B 188, 734 (1993).CrossRef
Honda, F., Eto, T., Oomi, G., Sechovský, V., Andreev, A.V., Takeshita, N., Môri, N., Czechoslovak Journal of Physics, 52, 263 (2002).CrossRef
Sechovsky, V., Honda, F., Prokeš, K., Griveau, J.C., Andreev, A.V., Arnold, Z., Kamarád, J., Oomi, G., J. Magn. Magn. Mater. 290-291 (2005) 629.CrossRef
Kolomiets, A. V., Griveau, J.-C., Prchal, J., Andreev, A. V., and Havela, L., Phys. Rev. B 91, 064405 (2015).CrossRef
Venturini, G., Méot-Meyer, M., Marêché, J.F., Malaman, B., Roques, B., Mat. Res. Bull. 21, 33 (1986).CrossRef
Mazumdar, C., Nigam, A.K., Nagarajan, R., Gupta, L.C., Chandra, G., Padalia, B.D., Godart, C., and Vijayaraghavan, R., J. Appl. Phys. 81, 5781 (1997).CrossRef
Sechovsky, V. and Havela, L.: Magnetism in ternary intermetallic compounds of uranium, in: Handbook on Magnetic Materials, ed. K.H.J. Buschow, 11, 1 (1998) (Amsterdam, North Holland).
Griveau, J.-C., Colineau, E., Bouëxiere, D., Gofryk, K., Klimczuk, T., Rebizant, J., J. Alloys Compd. 576, 409 (2013) and references therein.CrossRef
Nakashima, M., Kohara, H., Thamizhavel, A., Matsuda, T. D., Haga, Y., Hedo, M., Uwatoko, Y., Settai, R., and Ōnuki, Y., J. Phys.: Condens. Matter 17, 4539 (2005).
Becker, B., Ramakrishnan, S., Menovsky, A. A., Nieuwenhuys, G. J., and Mydosh, J. A., Phys. Rev. Lett. 78, 1347 (1997) and references therein.CrossRef
Takeuchi, T., Becker, B., Ramakrishnan, S., Menovsky, A. A., Nieuwenhuys, G. J., Miyako, Y., and Mydosh, J. A., J. Phys. Soc. Jpn. 68, 1086 (1999).CrossRef
Feyerherm, R., Wiebe, C. R., Gaulin, B. D., Collins, M. F., Becker, B., Hendrikx, R. W. A., Gortenmulder, T. J., Nieuwenhuys, G. J., and Mydosh, J. A., Phys. Rev. B 56, 13693 (1997).CrossRef
Li, D. X., Honda, F., Homma, Y., Nakamura, A. and Aoki, D., to be submitted.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Investigation of exotic electronic properties on rare-earth & actinide compounds under high pressure
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Investigation of exotic electronic properties on rare-earth & actinide compounds under high pressure
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Investigation of exotic electronic properties on rare-earth & actinide compounds under high pressure
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *