Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-xdj6x Total loading time: 0.19 Render date: 2021-09-24T20:06:50.380Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Improved Performance p-type Polymer (P3HT) / n-type Nanotubes (WS2) Electrolyte Gated Thin-Film Transistor

Published online by Cambridge University Press:  25 March 2018

Eleonora Macchia
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari “A. Moro”, Bari, Italy
Alla Zak
Affiliation:
HIT-Holon Institute of Technology, Holon, Israel
Rosaria Anna Picca
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari “A. Moro”, Bari, Italy
Kyriaki Manoli
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari “A. Moro”, Bari, Italy
Cinzia Di Franco
Affiliation:
CNR - Istituto di Fotonica e Nanotecnologie, Sede di Bari (I)
Nicola Cioffi
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari “A. Moro”, Bari, Italy
Gaetano Scamarcio
Affiliation:
CNR - Istituto di Fotonica e Nanotecnologie, Sede di Bari (I) Dipartimento di Fisica “M. Merlin” - Università degli Studi di Bari –“Aldo Moro” - Bari (I)
Reshef Tenne*
Affiliation:
Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel
Luisa Torsi*
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari “A. Moro”, Bari, Italy Abo Akademi Univeristy, Turku, Finland
Get access

Abstract

This work decribes the enhancement of the electrical figures of merit of an Electrolyte Gated Thin-Film Transistor (EG-TFT) comprising a nanocomposite of n-type tungsten disulfide (WS2) nanotubes (NTs) dispersed in a regio-regular p-type poly(3-hexylthiophene-2,5-diyl) (P3HT) polymeric matrix. P3HT/WS2 nanocomposites loaded with different concentrations of NTs, serving as EG-TFTs electronic channel materials have been studied and the formulation has been optimized. The resulting EG-TFTs figures of merit (field-effect mobility, threshold voltage and on-off ratio) are compared with those of the device comprising a bare P3HT semiconducting layer. The optimized P3HT/WS2 nanocomposite, comprising a 60% by weight of NTs, results in an improvement of all the elicited figures of merit with a striking ten-fold increase in the field-effect mobility and the on/off ratio along with a sizable enhancement of the in-water operational stability of the device.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pal, B.N., Trottman, P., Sun, J. and Katz, H.E., Adv. Funct. Mater. 18, 18321839 (2008).Google Scholar
Torricelli, F., Colalongo, L., Raiteri, D., Kova´cs-Vajna, Z.M. and Cantatore, E., Nature Commun. 7(10550), 19 (2016).Google Scholar
Khodagholy, D., Doublet, T., Quilichini, P., Gurfinkel, M., Leleux, P., Ghestem, A., Ismailova, E., Hervè, T., Sanaur, S., Bernard, C. and Malliaras, G.G., Nature Commun. 4(1575), 17 (2013).Google Scholar
Macchia, E., Alberga, D., Manoli, K., MAngiatordi, G.F., Magliulo, M., Palazzo, G., Giordano, F., Lattanzi, G. and Torsi, L., Scientific Reports 6, 28085 (2016).Google Scholar
Picca, R. A., Manoli, K., Luciano, A., Sportelli, M.C., Palazzo, G., Torsi, L. and Cioffi, N. submitted (2018).Google Scholar
Marinelli, F., Dell’Aquila, A., Torsi, L., Tey, J., Suranna, G.P., Mastrorilli, P., Romanazzi, G., Nobile, C.F., Mhaisalkar, S.G., Cioffi, N. and Palmisano, F, Sensors and Actuators B 140, 445 (2009).CrossRefGoogle Scholar
Palazzo, G., De Tullio, D., Magliulo, M., Mallardi, A., Intranuovo, F., Mulla, M.Y., Vikholm-Lundin, I. and Torsi, L., Advanced Materials, 27, 911 (2015)CrossRefGoogle Scholar
Torsi, L., Marinelli, F., Angione, M.D., Dell’Aquila, A., Cioffi, N., De Giglio, E. and Sabbatini, L., Organic Electronics 10, 233 (2009).CrossRefGoogle Scholar
Zhou, Y., Han, S.-T., Zhou, L., Yan, Y., Huang, L.-B., Huang, J., Roy, V. A. L., Mater, J.. Chem. C 1, 70737081 (2013).Google Scholar
Kim, S.H., Hong, K., Xie, W., Lee, K.H., Zhang, S., Lodge, T.P., Frisbie, C.D., Advanced Materials 25, 18221846 (2013).CrossRefGoogle Scholar
Sun, Z., Li, J., Liu, C., Yang, S. and Yan, F., Adv. Mater. 23, 36483652 (2011).CrossRefGoogle Scholar
Wang, M. and Wang, X., Degrad. Stab. Polym. Org. Sol. Cells 92, 766771 (2008).Google Scholar
Aleshin, A.N. and Shcherbakov, I.P., J. Phys. Appl. Phys. 43, 315104 (2010).CrossRefGoogle Scholar
Torsi, L., Magliulo, M., Manoli, K. and Palazzo, G., Chem. Soc. Rev. 42, 86128628 (2013).CrossRefGoogle Scholar
Ozgur, U., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., J. Appl. Phys. 98, 041301 (2005).CrossRefGoogle Scholar
Tevet, O., Goldbart, O., Cohen, S.R., Rosentsveig, R., Popovitz-Biro, R., Wagner, H.D. and Tenne, R., Nanotechnology 21, 365705 (2010).CrossRefGoogle Scholar
Kaplan-Ashiri, I., Cohen, S.R., Gartsman, K., Ivanovskaya, V., Heine, T., Seifert, G., Wiesel, I., Wagner, H.D. and Tenne, R., Proc. Natl. Acad. Sci. USA 103, 523528 (2006).CrossRefGoogle Scholar
Levi, R., Bitton, O., Leitus, G., Tenne, R. and Joselevich, E., NanoLett. 13, 37363741 (2013).CrossRefGoogle Scholar
Pardo, M., Shuster-Meiseles, T., Levin-Zaidman, S., Rudich, A. and Rudich, Y., Environmental Science & technology 48, 3457 (2014).CrossRefGoogle Scholar
Mulla, M.Y., Tuccori, E., Magliulo, M., Lattanzi, G., Palazzo, G., Persaud, K. and Torsi, L., Nature Commun. 6, 6010 (2015).CrossRefGoogle Scholar
Zak, A., Sallacan-Ecker, L., Margolin, A., Genut, M. and Tenne, R., NANO 4, 9198 (2009).CrossRefGoogle Scholar
Zak, A., Sallacan Ecker, L., Fleischer, N. and Tenne, R., Sensors & Transducers Journal 12, 110 (2011).Google Scholar
Lovinger, A. J., Davis, D. D., Ruel, R., Torsi, L., Dodabalapur, A., Katz, H. E., J. Mater. Res. 10, 2958 (1995).Google Scholar
Lovinger, A. J., Davis, D. D., Dodabalapur, A., Katz, H. E., Torsi, L., Macromolecules 29, 4952 (1996).CrossRefGoogle Scholar
Torsi, L., Dodabalapur, A., Lovinger, A. J., Katz, H. E., Ruel, R., Davis, D. D., Baldwin, K. W., Chem. Mater 7, 2247 (1996).CrossRefGoogle Scholar
Navan, R.R., Panigrahy, B., Baghini, M.S., Bahadur, D. and Rao, V.R., Composites: Part B 43, 16451648 (2012).CrossRefGoogle Scholar
Picca, R.A., Sportelli, M.C., Hotger, D., Manoli, K., Kranz, C., Mizaikoff, B., L.Torsi, and Cioffi, N., Electrochimica Acta 178, 4554 (2015).CrossRefGoogle Scholar
Xu, Z.X., Roy, V.A.L., Stallinga, P., Muccini, M., Toffanin, S., Xiang, H.F. and Che, C.M., Apll.Phys. Lett. 90, 223509 (2007).CrossRefGoogle Scholar
Xu, Z.X., Roy, V.A.L., Stallinga, P., Muccini, M., Toffanin, S., Xiang, H.F. and Che, C.M., Apll.Phys. Lett. 90, 223509 (2007).CrossRefGoogle Scholar
Nam, C.Y., Su, D. and Black, C.T., Adv. Funct. Mater. 19, 35523559 (2009).Google Scholar
Shrotriya, V., Yao, Y. and Yang, Y., Appl. Phys. Lett. 89, 063505 (2006).CrossRefGoogle Scholar
Duarte, D., Sharma, D., Cobb, B. and Dodabalapur, A., Appl. Phys. Lett. 98, 133302 (2011).CrossRefGoogle Scholar
Manoli, K., Patrikoussakis, M.M., Magliulo, M., Dumitru, L.M., Mulla, M.Y., Sabbatini, L. and Torsi, L., Organ. Electron. 15, 23722380 (2014).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Improved Performance p-type Polymer (P3HT) / n-type Nanotubes (WS2) Electrolyte Gated Thin-Film Transistor
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Improved Performance p-type Polymer (P3HT) / n-type Nanotubes (WS2) Electrolyte Gated Thin-Film Transistor
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Improved Performance p-type Polymer (P3HT) / n-type Nanotubes (WS2) Electrolyte Gated Thin-Film Transistor
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *