Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-17T06:58:33.023Z Has data issue: false hasContentIssue false

Improved Performance p-type Polymer (P3HT) / n-type Nanotubes (WS2) Electrolyte Gated Thin-Film Transistor

Published online by Cambridge University Press:  25 March 2018

Eleonora Macchia
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari “A. Moro”, Bari, Italy
Alla Zak
Affiliation:
HIT-Holon Institute of Technology, Holon, Israel
Rosaria Anna Picca
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari “A. Moro”, Bari, Italy
Kyriaki Manoli
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari “A. Moro”, Bari, Italy
Cinzia Di Franco
Affiliation:
CNR - Istituto di Fotonica e Nanotecnologie, Sede di Bari (I)
Nicola Cioffi
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari “A. Moro”, Bari, Italy
Gaetano Scamarcio
Affiliation:
CNR - Istituto di Fotonica e Nanotecnologie, Sede di Bari (I) Dipartimento di Fisica “M. Merlin” - Università degli Studi di Bari –“Aldo Moro” - Bari (I)
Reshef Tenne*
Affiliation:
Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel
Luisa Torsi*
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari “A. Moro”, Bari, Italy Abo Akademi Univeristy, Turku, Finland
Get access

Abstract

This work decribes the enhancement of the electrical figures of merit of an Electrolyte Gated Thin-Film Transistor (EG-TFT) comprising a nanocomposite of n-type tungsten disulfide (WS2) nanotubes (NTs) dispersed in a regio-regular p-type poly(3-hexylthiophene-2,5-diyl) (P3HT) polymeric matrix. P3HT/WS2 nanocomposites loaded with different concentrations of NTs, serving as EG-TFTs electronic channel materials have been studied and the formulation has been optimized. The resulting EG-TFTs figures of merit (field-effect mobility, threshold voltage and on-off ratio) are compared with those of the device comprising a bare P3HT semiconducting layer. The optimized P3HT/WS2 nanocomposite, comprising a 60% by weight of NTs, results in an improvement of all the elicited figures of merit with a striking ten-fold increase in the field-effect mobility and the on/off ratio along with a sizable enhancement of the in-water operational stability of the device.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Pal, B.N., Trottman, P., Sun, J. and Katz, H.E., Adv. Funct. Mater. 18, 18321839 (2008).Google Scholar
Torricelli, F., Colalongo, L., Raiteri, D., Kova´cs-Vajna, Z.M. and Cantatore, E., Nature Commun. 7(10550), 19 (2016).Google Scholar
Khodagholy, D., Doublet, T., Quilichini, P., Gurfinkel, M., Leleux, P., Ghestem, A., Ismailova, E., Hervè, T., Sanaur, S., Bernard, C. and Malliaras, G.G., Nature Commun. 4(1575), 17 (2013).Google Scholar
Macchia, E., Alberga, D., Manoli, K., MAngiatordi, G.F., Magliulo, M., Palazzo, G., Giordano, F., Lattanzi, G. and Torsi, L., Scientific Reports 6, 28085 (2016).Google Scholar
Picca, R. A., Manoli, K., Luciano, A., Sportelli, M.C., Palazzo, G., Torsi, L. and Cioffi, N. submitted (2018).Google Scholar
Marinelli, F., Dell’Aquila, A., Torsi, L., Tey, J., Suranna, G.P., Mastrorilli, P., Romanazzi, G., Nobile, C.F., Mhaisalkar, S.G., Cioffi, N. and Palmisano, F, Sensors and Actuators B 140, 445 (2009).Google Scholar
Palazzo, G., De Tullio, D., Magliulo, M., Mallardi, A., Intranuovo, F., Mulla, M.Y., Vikholm-Lundin, I. and Torsi, L., Advanced Materials, 27, 911 (2015)Google Scholar
Torsi, L., Marinelli, F., Angione, M.D., Dell’Aquila, A., Cioffi, N., De Giglio, E. and Sabbatini, L., Organic Electronics 10, 233 (2009).Google Scholar
Zhou, Y., Han, S.-T., Zhou, L., Yan, Y., Huang, L.-B., Huang, J., Roy, V. A. L., Mater, J.. Chem. C 1, 70737081 (2013).Google Scholar
Kim, S.H., Hong, K., Xie, W., Lee, K.H., Zhang, S., Lodge, T.P., Frisbie, C.D., Advanced Materials 25, 18221846 (2013).Google Scholar
Sun, Z., Li, J., Liu, C., Yang, S. and Yan, F., Adv. Mater. 23, 36483652 (2011).CrossRefGoogle Scholar
Wang, M. and Wang, X., Degrad. Stab. Polym. Org. Sol. Cells 92, 766771 (2008).Google Scholar
Aleshin, A.N. and Shcherbakov, I.P., J. Phys. Appl. Phys. 43, 315104 (2010).Google Scholar
Torsi, L., Magliulo, M., Manoli, K. and Palazzo, G., Chem. Soc. Rev. 42, 86128628 (2013).CrossRefGoogle Scholar
Ozgur, U., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., J. Appl. Phys. 98, 041301 (2005).Google Scholar
Tevet, O., Goldbart, O., Cohen, S.R., Rosentsveig, R., Popovitz-Biro, R., Wagner, H.D. and Tenne, R., Nanotechnology 21, 365705 (2010).Google Scholar
Kaplan-Ashiri, I., Cohen, S.R., Gartsman, K., Ivanovskaya, V., Heine, T., Seifert, G., Wiesel, I., Wagner, H.D. and Tenne, R., Proc. Natl. Acad. Sci. USA 103, 523528 (2006).Google Scholar
Levi, R., Bitton, O., Leitus, G., Tenne, R. and Joselevich, E., NanoLett. 13, 37363741 (2013).Google Scholar
Pardo, M., Shuster-Meiseles, T., Levin-Zaidman, S., Rudich, A. and Rudich, Y., Environmental Science & technology 48, 3457 (2014).Google Scholar
Mulla, M.Y., Tuccori, E., Magliulo, M., Lattanzi, G., Palazzo, G., Persaud, K. and Torsi, L., Nature Commun. 6, 6010 (2015).Google Scholar
Zak, A., Sallacan-Ecker, L., Margolin, A., Genut, M. and Tenne, R., NANO 4, 9198 (2009).Google Scholar
Zak, A., Sallacan Ecker, L., Fleischer, N. and Tenne, R., Sensors & Transducers Journal 12, 110 (2011).Google Scholar
Lovinger, A. J., Davis, D. D., Ruel, R., Torsi, L., Dodabalapur, A., Katz, H. E., J. Mater. Res. 10, 2958 (1995).Google Scholar
Lovinger, A. J., Davis, D. D., Dodabalapur, A., Katz, H. E., Torsi, L., Macromolecules 29, 4952 (1996).CrossRefGoogle Scholar
Torsi, L., Dodabalapur, A., Lovinger, A. J., Katz, H. E., Ruel, R., Davis, D. D., Baldwin, K. W., Chem. Mater 7, 2247 (1996).Google Scholar
Navan, R.R., Panigrahy, B., Baghini, M.S., Bahadur, D. and Rao, V.R., Composites: Part B 43, 16451648 (2012).Google Scholar
Picca, R.A., Sportelli, M.C., Hotger, D., Manoli, K., Kranz, C., Mizaikoff, B., L.Torsi, and Cioffi, N., Electrochimica Acta 178, 4554 (2015).Google Scholar
Xu, Z.X., Roy, V.A.L., Stallinga, P., Muccini, M., Toffanin, S., Xiang, H.F. and Che, C.M., Apll.Phys. Lett. 90, 223509 (2007).Google Scholar
Xu, Z.X., Roy, V.A.L., Stallinga, P., Muccini, M., Toffanin, S., Xiang, H.F. and Che, C.M., Apll.Phys. Lett. 90, 223509 (2007).CrossRefGoogle Scholar
Nam, C.Y., Su, D. and Black, C.T., Adv. Funct. Mater. 19, 35523559 (2009).Google Scholar
Shrotriya, V., Yao, Y. and Yang, Y., Appl. Phys. Lett. 89, 063505 (2006).Google Scholar
Duarte, D., Sharma, D., Cobb, B. and Dodabalapur, A., Appl. Phys. Lett. 98, 133302 (2011).Google Scholar
Manoli, K., Patrikoussakis, M.M., Magliulo, M., Dumitru, L.M., Mulla, M.Y., Sabbatini, L. and Torsi, L., Organ. Electron. 15, 23722380 (2014).Google Scholar