Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-kv5sj Total loading time: 0.293 Render date: 2021-09-23T10:22:12.730Z Has data issue: false Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Improved Corrosion Resistance and Increased Hardness of Copper Substrates from Cu-Ni/Ni-P Composite Coatings

Published online by Cambridge University Press:  27 April 2020

Wenwen Dou
Affiliation:
Department of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Wen Li
Affiliation:
Department of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Yuchen Cai
Affiliation:
Department of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Mengyao Dong*
Affiliation:
Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37934, USA
Xiaojing Wang
Affiliation:
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37934, USA
Jincheng Fan
Affiliation:
College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, China
Juying Zhou
Affiliation:
School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
Hua Hou
Affiliation:
School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
Shidong Zhu
Affiliation:
School of Materials Science and Engineering, Xi`an Shiyou University, Xi`an 710065, China
Shougang Chen*
Affiliation:
Department of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Zhanhu Guo*
Affiliation:
Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37934, USA
*
*Corresponding author: sgchen@ouc.edu.cn (S. Chen); dongbinbin@zzu.edu.cn (B. Dong); and zguo10@utk.edu or nanomaterials2000@gmail.com (Z. Guo)
*Corresponding author: sgchen@ouc.edu.cn (S. Chen); dongbinbin@zzu.edu.cn (B. Dong); and zguo10@utk.edu or nanomaterials2000@gmail.com (Z. Guo)
*Corresponding author: sgchen@ouc.edu.cn (S. Chen); dongbinbin@zzu.edu.cn (B. Dong); and zguo10@utk.edu or nanomaterials2000@gmail.com (Z. Guo)
Get access

Abstract

To improve the corrosion resistance and to increase the hardness of copper substrate in marine environment, the Cu-Ni/Ni-P composite coatings were prepared on the copper substrate using the galvanostatic electrolytic deposition method. The deposition current densities were explored to find the optimized deposition conditions for forming the composite coatings. Corrosion resistance properties were analyzed using the polarization curves and electrochemical impedance spectroscopy (EIS). Considering the corrosion resistance and hardness, the −20 mA/cm2 was selected to deposit Cu-Ni coatings on copper substrate and the −30 mA/cm2 was selected to deposit Ni-P coating on the Cu-Ni layer. The Cu-Ni/Ni-P composite coatings not only exhibited superior corrosion resistance compared to single Cu-Ni coating in 3.5 wt.% NaCl solution, but also showed much better mechanical properties than single Cu-Ni coating.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dou, W., Wu, J., Gu, T., Wang, P., Zhang, D., Corros. Sci. 131, 156-163 (2018).CrossRefGoogle Scholar
Dou, W., Jia, R., Jin, P., Liu, J., Chen, S., Gu, T., Corros. Sci. 144, 237-248 (2018).CrossRefGoogle Scholar
Kang, H., Shao, Q., Guo, X., Alex, A., Galaska, r., Liu, Y., Guo, Z., Eng. Sci. 1, 78-85, doi: 10.30919/espub.es.180312 (2018).Google Scholar
Asmatulu, R., Bollavaram, P.K., Patlolla, V.R., Alarifi, I.M., Khan, W.S., Adv. Compos. Hybrid Mater. 3(1), 66-83 (2020).CrossRefGoogle Scholar
Whelan, C., Kinsella, M., Carbonell, L., Ho, H., Maex, K., Microelectro. Eng. 70, 551-557 (2003).CrossRefGoogle Scholar
Tan, Z.J., Ma, T.D., Zhang, L.M., Zhang, W.M., Jia, R.G., Cao, D.D., Ji, H., Mater. Sci. Forum, 944, 389-397 (2019).CrossRefGoogle Scholar
Zhao, Y., Zhang, B., Chen, W., Wang, H., Wang, M., Hou, H., ES Mater. Manuf. 2, 45-50, doi: 10.30919/esmm5f120 (2018).Google Scholar
Nautiyal, A., Qiao, M., Ren, T., Huang, T., Zhang, X., Cook, J., Bozack, M. J., and Farag, R., Eng. Sci. 4 (2018) 70-78.Google Scholar
Nautiyal, A., Qiao, M., Ren, T., Huang, T.-S., Zhang, X., Cook, J., Bozack, M.J., Farag, R., Eng. Sci. 4, 70-78, doi: 10.30919/es8d776 (2018).Google Scholar
Zhu, G., Cui, X., Zhang, Y., Chen, S., Dong, M., Liu, H., Shao, Q., Ding, T., Wu, S., Guo, Z., Polymer 172, 415-422 (2019).CrossRefGoogle Scholar
He, Y., Wu, D., Zhou, M., Liu, H., Zhang, L., Chen, Q., Yao, B., Yao, D., Jiang, D., Liu, C., Guo, Z., Appl. Surf. Sci. 506, 144946 (2020).10.1016/j.apsusc.2019.144946CrossRefGoogle Scholar
He, Y., Chen, Q., Yang, S., Lu, C., Feng, M., Jiang, Y., Cao, G., Zhang, J., Liu, C., Compos. Part A: Appl. Scie. Manuf. 108, 12-22 (2018).CrossRefGoogle Scholar
Zhang, M., Dong, M., Chen, S., Guo, Z., Eng. Sci. 3, 67-76, doi: 10.30919/es8d732 (2018).Google Scholar
Li, G., Mai, Z., Shu, X., Chen, D., Liu, M., Xu, W., Adv. Compos. Hybrid Mater. 2(2), 254-265 (2019).CrossRefGoogle Scholar
Zheng, Y., Wang, X., Wu, G., Polym. Adv. Technol. 31(3), 527-535 (2020).CrossRefGoogle Scholar
Zheng, Y., Chen, L., Wang, X., Wu, G., Polymers 12(1), 45, doi: 10.3390/polym12010045 (2019).CrossRefGoogle Scholar
Shi, X., Wang, C., Zhang, J., Guo, L., Lin, J., Pan, D., Zhou, J., Fan, J., Ding, T., Guo, Z., J Mater. Sci. Technol. 51, 8-15 (2020).CrossRefGoogle Scholar
Zhang, W., Yu, Z., Chen, Z., Li, M., Mater. Lett. 67(1), 327-330 (2012).CrossRefGoogle Scholar
Mattarozzi, L., Cattarin, S., Comisso, N., Guerriero, P., Musiani, M., Vázquez-Gómez, L., Verlato, E., Electrochim. Acta. 89, 488-496 (2013).CrossRefGoogle Scholar
Varea, A., Pellicer, E., Pané, S., Nelson, B.J., Suriñach, S., Baró, M.D., Sort, J., Int. J. Electrochem. Sci 7, 1288-1302 (2012).Google Scholar
Quiroz, E., Urbina, B., Vázquez-Obregón, D., García-Cerda, L., Mater. Lett. 91, 67-70 (2013).CrossRefGoogle Scholar
Sequeira, C., Cardoso, D., Amaral, L., Šljukić, B., Santos, D., Corros. Rev. 34(4), 187-200 (2016).CrossRefGoogle Scholar
Oriňáková, R., Turoňová, A., Kladeková, D., Gálová, M., Smith, R.M., J. Appl. Electrochem. 36(9), 957-972 (2006).CrossRefGoogle Scholar
Melo, L.C., de Lima-Neto, P., Correia, A.N., J. Appl. Electrochem. 41(4), 415-422 (2011).CrossRefGoogle Scholar
Lee, J.M., Bae, K.M., Jung, K.K., Jeong, J.H., Ko, J.S., Appl. Surf. Sci. 289, 14-20 (2014).CrossRefGoogle Scholar
Goranova, D., Avdeev, G., Rashkov, R., Surf. Coat. Tech. 240, 204-210 (2014).CrossRefGoogle Scholar
Kasem, K.K., Worley, H., Elmasry, M., Adv. Compos. Hybrid Mater. 1(4), 748-758 (2018).CrossRefGoogle Scholar
Madram, A.R., Pourfarzad, H., Zare, H.R., Electrochim. Acta. 85, 263-267 (2012).CrossRefGoogle Scholar
Lin, C., Chen, K., He, J., Wear 261(11-12), 1390-1396 (2006).CrossRefGoogle Scholar
Yang, Y., Cheng, Y., Surf. Coat. Tech 205(10), 3198-3204 (2011).CrossRefGoogle Scholar
Qu, Q., Jiang, S., Bai, W., Li, L., Electrochim. Acta. 52(24), 6811-6820 (2007).CrossRefGoogle Scholar
Tong, Y., Hu, Y., Liang, X., Zhang, Z., Li, Y., Chen, Z., Xiong, X., Hua, M., Ceram. Int. in press, doi: 10.1016/j.ceramint.2020.02.236 (2020).Google Scholar
Tong, Y., Zhu, W., Bai, S., Hu, Y., Xie, X., Li, Y., Mater. Sci. Eng. A 735, 166-172 (2018).CrossRefGoogle Scholar
Tong, Y., Qi, P.B., Liang, X.B., Chen, Y.X., Hu, Y.L., Hu, Z.F., Materials 11(7), 1250 (2018).CrossRefGoogle Scholar
Tong, Y., Bai, S., Hu, Y.L., Liang, X., Ye, Y.C., Qin, Q., Ceram. Int. 44(4), 3692-3698 (2018).10.1016/j.ceramint.2017.11.141CrossRefGoogle Scholar
Zhao, Y., Tian, X., Zhao, B., Sun, Y., Guo, H., Dong, M., Liu, H., Wang, X., Guo, Z., Umar, A., Hou, H., Sci. Adv. Mater. 10(12), 1793-1804 (2018).CrossRefGoogle Scholar
Zhao, Z., Bai, P., Guan, R., Murugadoss, V., Liu, H., Wang, X., Guo, Z., Mater. Sci. Eng. A 734, 200-209 (2018).CrossRefGoogle Scholar
Du, H.Y., An, Y.L., Wei, Y.H., Hou, L.F., Liu, B.S., Liu, H., Ma, Y., Zhang, J.X., Wang, N., Umar, A., Guo, Z.H., Sci. Adv. Mater. 10(7), 1063-1072 (2018).10.1166/sam.2018.3324CrossRefGoogle Scholar
Xie, P., Li, Y., Hou, Q., Sui, K., Liu, C., Fu, X., Zhang, J.-x., Murugadoss, V., Fan, J., Wang, Y., Fan, R., Guo, Z., J. Mater. Chem. C 8, 3029-3039 (2020).CrossRefGoogle Scholar
Sun, K., Wang, Z., Xin, J., Wang, Z., Xie, P., Fan, G., Murugadoss, V., Fan, R., Fan, J., Guo, Z., Macromol. Mater. Eng. 305(3) (2020) 1900709.CrossRefGoogle Scholar
Hu, W., Huang, J., Zhang, X., Zhao, S., Pei, L., Zhang, C., Liu, Y., Wang, Z., Appl. Surf. Sci. 507 (2020) 145168.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Improved Corrosion Resistance and Increased Hardness of Copper Substrates from Cu-Ni/Ni-P Composite Coatings
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Improved Corrosion Resistance and Increased Hardness of Copper Substrates from Cu-Ni/Ni-P Composite Coatings
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Improved Corrosion Resistance and Increased Hardness of Copper Substrates from Cu-Ni/Ni-P Composite Coatings
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *