Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-bxbhv Total loading time: 0.23 Render date: 2023-02-04T23:30:46.601Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Article contents

High-Intensity CsPbBr3 Perovskite LED using Poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine) as Hole Transport and Electron-Blocking Layer

Published online by Cambridge University Press:  21 January 2020

Gintautas Simkus*
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074 Aachen, Germany AIXTRON SE, Dornkaulstr. 2, 52134 Herzogenrath, Germany
Simon Sanders
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074 Aachen, Germany
Dominik Stümmler
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074 Aachen, Germany
Andrei Vescan
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074 Aachen, Germany
Holger Kalisch
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074 Aachen, Germany
Michael Heuken
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074 Aachen, Germany AIXTRON SE, Dornkaulstr. 2, 52134 Herzogenrath, Germany
Get access

Abstract

The majority of highly efficient perovskite light-emitting diodes (PeLED) contain PEDOT:PSS (poly(3,4-ethylenedioxythiophene):polystyrenesulfonate) as hole transport layer (HTL). However, the hygroscopic and acidic nature of PEDOT:PSS may lead to deterioration of PeLED performance. Moreover, due to its inferior electron-blocking properties, an additional electron-blocking layer (EBL) is required to establish charge balance and consequently obtain superior emission characteristics in typically electron-rich PeLED structures. In this work, PTAA (poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine)) serving both as HTL and EBL is employed to substitute PEDOT:PSS in PeLED. The perovskite CsPbBr3 is chosen as emissive layer (EML) material due to its high color purity and photoluminescence (PL) quantum yield. Dense CsPbBr3 films are fabricated on PTAA-coated ITO substrates by employing a one-step spin-coating approach based on nonstoichiometric perovskite precursor solutions. To suppress non-radiative recombination, a small amount of methylammonium bromide (MABr) is incorporated in the CsPbBr3 lattice. The resulting films exhibit excellent coverage and PL intensity. PeLED containing pure CsPbBr3 films as EML show a green emission with a peak at 520 nm, maximum luminance of 11,000 cd/m2, an external quantum efficiency (EQE) of 3.3 % and a current efficiency (CE) of 10.3 cd/A. Further enhancement to 21,000 cd/m2, 7.5 % and 27.0 cd/A is demonstrated by PeLED with MABr-doped CsPbBr3 layers.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Luo, D., Chen, Q., Qiu, Y., Zhang, M. and Liu, B., Nanomaterials, 9, 1007 (2019).CrossRefGoogle Scholar
Lin, K., Xing, J., Quan, L. N., de Arquer, F. P. G., Gong, X., Lu, J., Xie, L., Zhao, W., Zhang, D., Yan, C., Li, W., Liu, X., Lu, Y., Sargent, E. H., Xiong, Q. and Wei, Z., Nature, 562, 245-246 (2018).CrossRefGoogle Scholar
Wang, Z., Luo, Z., Zhao, C., Guo, Q., Wang, Y., Wang, F., Bian, X., Alsaedi, A., Hayat, T. and Tan, Z., J. Phys. Chem. C, 121, 2813228138 (2017).CrossRefGoogle Scholar
Jørgensen, M., Norrman, K. and Krebs, F. C., Sol. Energy Mater. Sol. Cells, 92, 686 (2008).CrossRefGoogle Scholar
Zhao, Q., Wu, R., Zhang, Z., Xiong, J., He, Z., Fan, B., Dai, Z., Yang, B., Xue, X., Cai, P., Zhan, S., Zhang, X. and Zhang, J., Organic Electronics, 71, 106-112 (2019).CrossRefGoogle Scholar
Xu, C., Liu, Z. and Lee, E. C., J. Mater. Chem. C, 6, 6975-6981 (2018).CrossRefGoogle Scholar
Bi, C., Wang, Q., Shao, Y., Yuan, Y., Xiao, Z. and Huang, J., Nat. Commun., 6, 7747 (2015).CrossRefGoogle Scholar
Yantara, N., Bhaumik, S., Yan, F., Sabba, D., Dewi, H., Mathews, N., Boix, P. P., Demir, H. V. and Mhaisalkar, S., J. Phys. Chem. Lett., 6, 43604364 (2015).CrossRefGoogle Scholar
Stolterfoht, M., Wolff, C. M., Amir, Y., Paulke, A., Perdigon-Toro, L., Caprioglio, P. and Neher, D., Energy Environ. Sci., 10, 1530 (2017).CrossRefGoogle Scholar
Liu, Y. Cheng, Liu, C., Zhang, T., Zhang, N., Zhang, S., Chen, J., Xu, Q., Ouyang, J. and Gong, H, Energy Environ. Sci., 12, 1622 (2019).CrossRefGoogle Scholar
Prakasam, V., Di Giacomo, F., Abbel, R., Tordera, D., Sessolo, M., Gelinck, G. and Bolink, H. J., ACS Appl. Mater. Interfaces, 10, 4158641591 (2018).CrossRefGoogle Scholar
Reineke, S., Lindner, F., Schwartz, G., Seidler, N., Walzer, K., Lüssem, B. and Leo, K., Nature, 459, 234238 (2009).CrossRefGoogle Scholar
Ahn, S., Yabumoto, K., Jeong, Y. and Akagi, K., Polym. Chem., 5, 6977 (2014).CrossRefGoogle Scholar
Stoumpos, C. C., Malliakas, C. D., Peters, J. A., Liu, Z., Sebastian, M., Im, J., Chasapis, T. C., Wibowo, A. C., Chung, D. Y., Freeman, A. J., Wessels, B. W. and Kanatzidist, M. G., Cryst. Growth Des., 13, 27222727 (2013).CrossRefGoogle Scholar
Cottingham, P. and Brutchey, R. L., Chem. Mater., 28, 75747577 (2016).CrossRefGoogle Scholar
Wei, Z., Perumal, A., Su, R., Suchant, S., Xing, J., Zhang, Q., Tan, S. T., Demir, H. V. and Xiong, Q., Nanoscale, 8, 18021 (2016).CrossRefGoogle ScholarPubMed
Wang, M., Wang, H., Lo, W., Hu, X., Sun, K. and Zhang, Z., J. Mater. Chem. A, 7, 26421, (2019).CrossRefGoogle Scholar
Hou, F., Shi, B., Li, T., Xin, C., Ding, Y., Wei, C., Wang, G., Li, Y., Zhao, Y. and Zhang, X., ACS Appl. Mater. Interfaces, 11, 25218-25226 (2019).CrossRefGoogle Scholar
Zhang, L., Yang, X., Jiang, Q., Wang, P., Yin, Z., Zhang, X., Tan, H., Yang, Y., Wei, M., Sutherland, B. R., Sargent, E. H. and You, J., Nat. Commun., 8, 15640 (2017).CrossRefGoogle Scholar
Woomer, A. H., Farnsworth, T. W., Hu, J., Wells, R. A., Donley, C. L. and Warren, S. C., ACS Nano, 9, 88698884, (2015).CrossRefGoogle Scholar
Bubnova, O., Khan, Z. U., Wang, H., Braun, S., Evans, D. R., Fabretto, M, Hjati-Talemi, P., Dagnelund, D., Arlin, J. B., Geerts, Y. H., Desbief, S., Breiby, D. W., Andreasen, J. W., Lazzaroni, R., Chen, W. M., Zozoulenko, I., Fahlman, M., Murphy, P. J., Berggren, M. and Crispin, X., Nat. Mater. , 13, 190 (2013).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

High-Intensity CsPbBr3 Perovskite LED using Poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine) as Hole Transport and Electron-Blocking Layer
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

High-Intensity CsPbBr3 Perovskite LED using Poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine) as Hole Transport and Electron-Blocking Layer
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

High-Intensity CsPbBr3 Perovskite LED using Poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine) as Hole Transport and Electron-Blocking Layer
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *