Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T15:00:41.328Z Has data issue: false hasContentIssue false

Green synthesis of silver nanoparticles with phytosterols and betalain pigments as reducing agents present in cactus Myrtillocactus geometrizans.

Published online by Cambridge University Press:  25 November 2020

Isaac Lucas-Gómez*
Affiliation:
Doctorado en Nanociencias y Nanotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional C. P. 07360 Ciudad de México, México. Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional C. P. 07360 Ciudad de México, México. Laboratory of Medicinal Chemistry and Pharmacology. Center for Research in Biology of Reproduction, Medicine Department, Institute of Health Sciences, Universidad Autónoma del Estado de Hidalgo. Calle Dr. Eliseo Ramírez Ulloa No 400, Col. Doctores, Pachuca, Hidalgo, México. Escuela Superior de Apan. Universidad Autónoma del Estado de Hidalgo. Carretera Apan-Calpulalpan Km.8, Col. Chimalpa, 43920 Apan, Hidalgo. Laboratorio Avanzado de Nanoscopía Electrónica (LANE), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional C. P. 07360 Ciudad de México, México. Universidad Metropolitana del Valle de México (UTVAM), academia de química ambiental.
Gabriela Carrasco-Torres
Affiliation:
Doctorado en Nanociencias y Nanotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional C. P. 07360 Ciudad de México, México.
Daniel Bahena-Uribe
Affiliation:
Doctorado en Nanociencias y Nanotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional C. P. 07360 Ciudad de México, México. Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional C. P. 07360 Ciudad de México, México. Laboratory of Medicinal Chemistry and Pharmacology. Center for Research in Biology of Reproduction, Medicine Department, Institute of Health Sciences, Universidad Autónoma del Estado de Hidalgo. Calle Dr. Eliseo Ramírez Ulloa No 400, Col. Doctores, Pachuca, Hidalgo, México. Escuela Superior de Apan. Universidad Autónoma del Estado de Hidalgo. Carretera Apan-Calpulalpan Km.8, Col. Chimalpa, 43920 Apan, Hidalgo. Laboratorio Avanzado de Nanoscopía Electrónica (LANE), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional C. P. 07360 Ciudad de México, México.
Jaime Santoyo-Salazar
Affiliation:
Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional C. P. 07360 Ciudad de México, México.
Eduardo Fernández-Martínez
Affiliation:
Laboratory of Medicinal Chemistry and Pharmacology. Center for Research in Biology of Reproduction, Medicine Department, Institute of Health Sciences, Universidad Autónoma del Estado de Hidalgo. Calle Dr. Eliseo Ramírez Ulloa No 400, Col. Doctores, Pachuca, Hidalgo, México.
Isabel Sánchez-Crisóstomo
Affiliation:
Laboratory of Medicinal Chemistry and Pharmacology. Center for Research in Biology of Reproduction, Medicine Department, Institute of Health Sciences, Universidad Autónoma del Estado de Hidalgo. Calle Dr. Eliseo Ramírez Ulloa No 400, Col. Doctores, Pachuca, Hidalgo, México.
José. A. Pescador-Rojas
Affiliation:
Escuela Superior de Apan. Universidad Autónoma del Estado de Hidalgo. Carretera Apan-Calpulalpan Km.8, Col. Chimalpa, 43920 Apan, Hidalgo.
José E. Aparicio-Burgos
Affiliation:
Escuela Superior de Apan. Universidad Autónoma del Estado de Hidalgo. Carretera Apan-Calpulalpan Km.8, Col. Chimalpa, 43920 Apan, Hidalgo.
*
*corresponding author
Get access

Abstract

In the current work, we compared the green synthesis of silver nanoparticles (AgNP) using plant extracts, a promising methodology against the use of chemical reducers, such as oleic acid and oleylamine. The advantages of green synthesis are one-step method, economic and ecological while the advantages of classic synthesis methods are high nanoparticle performance, homogeneity in size and smaller average sizes. With this work we want to demonstrate that plant extracts with specific mixtures of chemical compounds can obtain smaller average sizes with greater homogeneity in nanoparticles compared to the use of classical synthesis. Myrtillocactus geometrizans was used as a polar plant extract, which was selected by the chemical components contained in the extract. Phytosterols, oleic acid and betalains contained in Myrtillocactus geometrizans are biomolecules responsible for the reduction and stability of AgNP below 5 nm. TEM analysis of the green synthesis of nanoparticles revealed the formation of spherical particles with an average diameter of 5 nm and with preferential crystallographic directions of the silver plane [111].

Type
Articles
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amirjani, A. and Haghshenas, D.F., Modified Finke–Watzky mechanisms for the two-step nucleation and growth of silver nanoparticles. Nanotechnology, 2018. 29(50): p. 505602.CrossRefGoogle ScholarPubMed
Mourdikoudis, S. and Liz-Marzán, L.M., Oleylamine in Nanoparticle Synthesis. Chemistry of Materials, 2013. 25(9): p. 1465-1476.10.1021/cm4000476CrossRefGoogle Scholar
Jorge de Souza, T.A., Rosa Souza, L.R., and Franchi, L.P., Silver nanoparticles: An integrated view of green synthesis methods, transformation in the environment, and toxicity. Ecotoxicology and Environmental Safety, 2019. 171: p. 691-700.CrossRefGoogle ScholarPubMed
Kshirsagar, A.S. and Khanna, P.K., Reaction Tailoring for Synthesis of Phase-Pure Nanocrystals of AgInSe2, Cu3SbSe3 and CuSbSe2. ChemistrySelect, 2018. 3(10): p. 2854-2866.CrossRefGoogle Scholar
Ballester Olmos, J.F., Los cactus y las otras plantas suculentas. 1978.Google Scholar
Barrera, F.A.G., Reynoso, C.R., and González de Mejía, E., Estabilidad de las betalaínas extraídas del garambullo (Myrtillocactus geometrizans) / Stability of betalains extracted from garambullo (Myrtillocactus geometrizans). Food Science and Technology International, 1998. 4(2): p. 115-120.CrossRefGoogle Scholar
Djerassi, C., et al. ., Terpenoids. XXVIII.1 The Triterpene Composition of the Genus Myrtillocactus2. Journal of the American Chemical Society, 1957. 79(13): p. 3525-3528.10.1021/ja01570a060CrossRefGoogle Scholar
Djerassi, C., Murray, R.D.H., and Villotti, R., 204. The structure of the cactus sterol, peniocerol (cholest-8-ene-3β,6α-diol). Journal of the Chemical Society (Resumed), 1965(0): p. 1160-1165.Google Scholar
Sandoval, A., et al. ., Terpenoids. XXX.1 The Structure of the Cactus Triterpene Chichipegenin. Journal of the American Chemical Society, 1957. 79(16): p. 4468-4472.CrossRefGoogle Scholar
Razgoniaeva, N., et al. ., Measuring the Time-Dependent Monomer Concentration during the Hot-Injection Synthesis of Colloidal Nanocrystals. Chemistry of Materials, 2015. 27(17): p. 6102-6108.CrossRefGoogle Scholar
Reyes-Rodríguez, J.L., et al. ., Influence of the injection temperature on the size of Ni–Pt polyhedral nanoparticles synthesized by the hot-injection method. MRS Communications, 2017. 7(4): p. 947-952.CrossRefGoogle Scholar
Céspedes, C.L., et al. ., Insect growth regulatory effects of some extracts and sterols from Myrtillocactus geometrizans (Cactaceae) against Spodoptera frugiperda and Tenebrio molitor. Phytochemistry, 2005. 66(20): p. 2481-2493.CrossRefGoogle ScholarPubMed
Djerassi, C., Knight, J.C., and Wilkinson, D.I., The Structure of the Cactus Sterol Macdougallin (14α-Methyl-[UNK]-Cholestene-3β,6α-Diol)--A Novel Link in Sterol Biogenesis. Journal of the American Chemical Society, 1963. 85(6): p. 835-835.10.1021/ja00889a056CrossRefGoogle Scholar
Information, N.C.f.B. PubChem Compound Database; CID=612548. 2018 [cited 2018; https://pubchem.ncbi.nlm.nih.gov/compound/612548 ].Google Scholar
Information, N.C.f.B. PubChem Compound Database; CID=23258271. 2018 [cited 2018; https://pubchem.ncbi.nlm.nih.gov/compound/23258271].Google Scholar
Information, N.C.f.B. PubChem Compound Database; CID=56841626. 2018 [cited 2018; https://pubchem.ncbi.nlm.nih.gov/compound/56841626].Google Scholar
Raj, S., Chand Mali, S., and Trivedi, R., Green synthesis and characterization of silver nanoparticles using Enicostemma axillare (Lam.) leaf extract. Biochemical and Biophysical Research Communications, 2018. 503(4): p. 2814-2819.CrossRefGoogle ScholarPubMed
Lee, J., et al. ., Simultaneous determination three phytosterol compounds, campesterol, stigmasterol and daucosterol in Artemisia apiacea by high performance liquid chromatography-diode array ultraviolet/visible detector. Pharmacogn Mag, 2015. 11(42): p. 297-303.Google ScholarPubMed
Arudi, R.L., Sutherland, M.W., and Bielski, B.H., Purification of oleic acid and linoleic acid. Journal of Lipid Research, 1983. 24(4): p. 485-8.Google ScholarPubMed
Rolim, W.R., et al. ., Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity. Applied Surface Science, 2019. 463: p. 66-74.CrossRefGoogle Scholar
Edington, J., Typical Electron Microscope Investigations, Philips Technical Library. Monographs in Practical Electron Microscopy in Material Science, Thomson Litho Ltd, 1976.CrossRefGoogle Scholar