Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-vbn2q Total loading time: 0.172 Render date: 2021-07-30T11:50:41.872Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Fatigue Behavior of A Minor Yttrium Doped ZrCuNi-Based Metallic Glass Alloy Fabricated by Industrial Grade Raw Material

Published online by Cambridge University Press:  27 February 2020

Shichao Zhou
Affiliation:
The State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, No. 30, Xueyuan Road, Beijing 100083, China
Tao Zhang
Affiliation:
The School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou City, Guangdong Province510006, PR China
Min Zhang
Affiliation:
Luoyang Advanced Manufacturing Industrial R&D Center Tianjin Research Institute for Advanced Equipment, Tsinghua University
Yong Zhang
Affiliation:
The State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, No. 30, Xueyuan Road, Beijing 100083, China
Corresponding
E-mail address:
Get access

Abstract

The fatigue behavior of a low-cost Zr52.1Ti5Cu17.9Ni14.6Al10Y0.4 (at%) (ZrCuNi-based) bulk-metallic glass (BMG) prepared by industrial-grade material was investigated under three-point bending loading modes. In order to obtain the fatigue stress-life (S-N) data, stress-controlled experiments were conducted using a computer-controlled material test system electrohydraulic testing machine at 60 Hz with a 0.1 R ratio in the air at room temperature. The fatigue limit (~174 MPa) in stress amplitude and fatigue ratio (~0.14) of this BMG is comparative to the similar BMG (Vit-105) prepared by high pure raw materials. The crack initiated from inclusions near the rectangular corners at the outer surface of the rectangular beam due to stress concentration. The striations and vein-like patterns were observed in the crack propagation region and fast fracture region, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sun, B. A. and Wang, W. H., Progress in Materials Science 74, 211 (2015).CrossRefGoogle Scholar
Scully, J. R. and Gebert, A. and Payer, J. H., Journal of Materials Research 22, 302 (2006).CrossRefGoogle Scholar
Jia, H., Wang, G., Chen, S., Gao, Y., Li, W., and Liaw, P. K., Progress in Materials Science 98, 168 (2018).CrossRefGoogle Scholar
Jiang, F., Wang, Z. J., Zhang, Z. B., and Sun, J., Scripta Materialia 53, 487 (2005).CrossRefGoogle Scholar
Yong Zhang, M. X. P. D., Materials Transactions 11, 1410 (2000).CrossRefGoogle Scholar
Zhang Yong, Z. Y. H. X., Science in China Series G: Physics, Mechanics & Astronomy 4, 427 (2008).CrossRefGoogle Scholar
Zhang, Y., Chen, J., Chen, G. L., and Liu, X. J., Applied Physics Letters 89, 131904 (2006).CrossRefGoogle Scholar
Zhang, T., Meng, X., Wang, C., Li, L., Yang, J., Li, W., Li, R., and Zhang, Y., Journal of Alloys and Compounds 792, 851 (2019).CrossRefGoogle Scholar
Gilbert, C. J. and Lippmann, J. M. and Ritchie, R. O., Scripta Materialia 38, 537 (1998).CrossRefGoogle Scholar
Wang, X. D., Qu, R. T., Wu, S. J., Liu, Z. Q., and Zhang, Z. F., Materials Science and Engineering: A 717, 41 (2018).CrossRefGoogle Scholar
Wang, X. D., Qu, R. T., Liu, Z. Q., and Zhang, Z. F., Journal of Alloys and Compounds 695, 2016 (2017).CrossRefGoogle Scholar
Launey, M. E., Hofmann, D. C., Johnson, W. L., and Ritchie, R. O., Proceedings of the National Academy of Sciences of the United States of America 106, 4986 (2009).CrossRefGoogle Scholar
Morrison, M. L., Buchanan, R. A., Liaw, P. K., Green, B. A., Wang, G. Y., Liu, C. T., and Horton, J. A., Materials Science and Engineering: A 467, 190 (2007).CrossRefGoogle Scholar
Naleway, S. E., Greene, R. B., Gludovatz, B., Dave, N.K.N., Ritchie, R. O., and Kruzic, J.J., Metallurgical and Materials Transactions A 44A, 5688 (2013).CrossRefGoogle Scholar
Gilbert, C. J. and Schroeder, V. and Ritchie, R. O., Metallurgical and Materials Transactions A 30, 1739 (1999).CrossRefGoogle Scholar
Ritchie, R. O. and Schroeder, V. and Gilbert, C. J., Intermetallics 8, 469 (2000).CrossRefGoogle Scholar
Qiao, S. G. M. G. J. W., Metallurgical and Materials Transactions A 42, 2530 (2011).CrossRefGoogle Scholar
Zhang, L. K., Chen, Z. H., Chen, D., Zhao, X. Y., and Zheng, Q., Journal of Non-Crystalline Solids 370, 31 (2013).CrossRefGoogle Scholar
Wang, G. Y., Qiao, D. C., Yokoyama, Y., Freels, M., Inoue, A., and Liaw, P. K., Journal of Alloys and Compounds 483, 143 (2009).CrossRefGoogle Scholar
Wang, G. Y., Liaw, P. K., Peter, W. H., Yang, B., Freels, M., Yokoyama, Y., Benson, M. L., Green, B. A., Saleh, T. A., McDaniels, R. L., Steward, R. V., Buchanan, R. A., Liu, C. T., and Brooks, C. R., Intermetallics 12, 1219 (2004).CrossRefGoogle Scholar
Wang, G. Y., Liaw, P. K., Peter, W. H., Yang, B., Yokoyama, Y., Benson, M. L., Green, B. A., Kirkham, M. J., White, S. A., Saleh, T. A., McDaniels, R. L., Steward, R. V., Buchanan, R. A., Liu, C. T., and Brooks, C. R., Intermetallics 12, 885 (2004).CrossRefGoogle Scholar
Yue, Y., Wang, R., Ma, D. Q., Tian, J. F., Zhang, X. Y., Jing, Q., Ma, M. Z., and Liu, R. P., Intermetallics 60, 86 (2015).CrossRefGoogle Scholar
Wang, X. D., Qu, R. T., Liu, Z. Q., and Zhang, Z. F., Materials Science and Engineering: A 627, 336 (2015).CrossRefGoogle Scholar
Wang, X. D., Qu, R. T., Liu, Z. Q., and Zhang, Z. F., Materials Science and Engineering: A 696, 267 (2017).CrossRefGoogle Scholar
Qu, R. T., Wang, S. G., Wang, X. D., Liu, Z. Q., and Zhang, Z. F., Scripta Materialia 133, 24 (2017).CrossRefGoogle Scholar
Wang, X. D., Qu, R. T., Wu, S. J., Zhu, Z. W., Zhang, H. F., and Zhang, Z. F., Materialia 7, 100407 (2019).CrossRefGoogle Scholar
Wang, G. Y., Liaw, P. K., Peker, A., Yang, B., Benson, M. L., Yuan, W., Peter, W. H., Huang, L., Freels, M., Buchanan, R. A., Liu, C. T., and Brooks, C. R., Intermetallics 13, 429 (2005).CrossRefGoogle Scholar
Schroeder, V. and Ritchie, R. O., Acta Materialia 54, 1785 (2006).CrossRefGoogle Scholar
Wang, G., Liaw, P. K., Yokoyama, Y., Freels, M., and Inoue, A., Advanced Engineering Materials 10, 1030 (2008).CrossRefGoogle Scholar
Qiao, D. C., Liaw, P. K., Fan, C., Lin, Y. H., Wang, G. Y., Choo, H., and Buchanan, R. A., Intermetallics 14, 1043 (2006).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fatigue Behavior of A Minor Yttrium Doped ZrCuNi-Based Metallic Glass Alloy Fabricated by Industrial Grade Raw Material
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Fatigue Behavior of A Minor Yttrium Doped ZrCuNi-Based Metallic Glass Alloy Fabricated by Industrial Grade Raw Material
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Fatigue Behavior of A Minor Yttrium Doped ZrCuNi-Based Metallic Glass Alloy Fabricated by Industrial Grade Raw Material
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *