Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-ssw5r Total loading time: 0.401 Render date: 2022-08-09T10:35:33.581Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Article contents

Electronic Structure and Transport Properties of Doped Lead Chalcogenides from First Principles

Published online by Cambridge University Press:  14 August 2016

Piotr Śpiewak*
Affiliation:
Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
Krzysztof J. Kurzydłowski
Affiliation:
Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
Get access

Abstract

The structural and electronic properties of lead chalcogenides PbX (X=S, Se, and Te) are investigated by first-principles calculations based on the range-separated hybrid functionals and semilocal generalized gradient approximation. It is found that an accurate band structure description requires the hybrid functional with the spin-orbit coupling included. Using this approach, the band structure of lead telluride and doped lead selenide are calculated, and its influences on the transport properties are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Minnich, A.J., Dresselhaus, M.S., Ren, Z. F. and Chen, G., Energy Environ. Sci. 2, 466 (2009).CrossRef
Vineis, C. J., Shakouri, A., Majumdar, A. and Kanatzidis, M. G., Adv. Mater. 22, 3970 (2010).CrossRef
Zeberjadi, M., Esfarjani, K., Dresselhaus, M. S., Ren, Z. F. and Chen, G., Energy Environ. Sci. 5, 5147 (2012).CrossRef
Nolas, G. S., Cohn, J. L., and Slack, G. A., Phys. Rev. B 58, 164 (1998).CrossRef
Kanatzidis, M. G., Chem. Mater. 22, 648 (2010).CrossRef
Pei, Y., Wang, H. and Snyder, G. J., Adv. Mater. 24, 6125 (2012).CrossRef
Pei, Y., Lensch-Falk, J., Toberer, E. S., Medlin, D. L., and Snyder, G. J., Adv. Funct. Mater. 21, 241 (2011).CrossRef
Heremans, J. P., Jovovic, V., Toberer, E. S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., and Snyder, G. J., Science 321, 554 (2008).CrossRef
Jaworski, C. M., Wiendlocha, B., Jovovic, V., Heremans, J. P., Energy Environ. Sci. 4, 4155 (2011).CrossRef
Zhang, Q., Wang, H., Liu, W., Wang, H., Yu, B., Zhang, Q., Tian, Z., Ni, G., Lee, S., Esfarjani, K., Chen, G., Ren, Z., Energy Environ. Sci. 5, 5246 (2012).CrossRef
Heremans, J. P., Wiendlocha, B., Chamoire, A. M., Energy Environ. Sci. 5, 5510 (2012).CrossRef
Wang, S., Wang, Z., Setyawan, W., Mingo, N., Curtarolo, S., Phys. Rev. X 1, 021012 (2011).
Lee, J.-H., Wu, J., and Grossman, J. C., Phys. Rev. Lett. 104, 016602 (2010).CrossRef
Mahan, G. D. and Sofo, J. O., Proc. Natl. Acad. Sci. USA 93, 7436 (1996).CrossRef
Madsen, G. K. H. and Singh, D. J., Comput. Phys. Commun. 175, 67 (2006).CrossRef
Pizzi, G., Volja, D., Kozinsky, B., Fornari, M., and Marzari, N., Comput. Phys. Commun. 185, 422 (2014).CrossRef
Zhao, L-D.,Dravidb, a V. P. and Kanatzidis, M. G., Energy Environ. Sci. 7, 251 (2014).CrossRef
Heyd, J., Scuseria, G. E., and Ernzerhof, M., J. Chem. Phys. 118, 8207 (2003); and erratum ibid. 124, 219906 (2006).CrossRef
Hummer, K., Grüuneis, A., and Kresse, G., Phys. Rev. B 75, 195211 (2007).CrossRef
Śpiewak, P., Vanhellemont, J., and Kurzydłowski, K. J., J. Appl. Phys. 110 (2011) 063534.CrossRef
Śpiewak, P., and Kurzydłowski, K. J., Phys. Rev. B 88, 195204 (2013).CrossRef
Advanced Calculations for Defects in Materials, edited by Alkauskas, A., Deak, P., Neugebauer, J., Pasquarello, A., and Van de Walle, C. G. (Wiley-VCH, Germany, 2011).CrossRefGoogle Scholar
Ahmad, S., Mahanti, S., Hoang, K., and Kanatzidis, M., Phys. Rev. B 74, 155205 (2006).CrossRef
Peng, H., Song, J-H, Kanatzidis, M. G., and Freeman, A. J., Phys. Rev. B 84, 125207 (2011).CrossRef
Joseph, E. and Amouyal, Y., J. Appl. Phys. 117, 175102 (2015).CrossRef
Tan, X., Shao, H., Hu, T., Liu, G-Q. and Ren, S-F., J. Phys.: Condens. Matter 27, 095501 (2015).
Borges, P. D., Petersen, J.E., Scolfaro, L., Leite Alves, H. W., Myers, T. H., J. Solid State Chem. 227, 123 (2015).CrossRef
Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996); P. E. Blöchl, ibid. 50, 17953 (1994); G. Kresse and D. Joubert, ibid. 59, 1758 (1999).CrossRef
Schimka, L., Harl, J., and Kresse, G., J. Chem. Phys. 134, 024116 (2011).CrossRef
Constantin, L. A., Perdew, J. P., and Pitarke, J. M., Phys. Rev. B 79, 075126 (2009).CrossRef
Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).CrossRef
Paier, J., Marsman, M., Hummer, K., Kresse, G., Gerber, I. C., and Ángyán, J. G., J. Chem. Phys. 124, 154709 (2006); and erratum ibid. 125, 249901(E) (2006).CrossRef
Murnaghan, F. D., Proc. Natl. Acad. Sci. USA 30, 244 (1944).CrossRef
Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I., and Vanderbilt, D., Rev. Mod. Phys. 84, 1419 (2012)CrossRef
Zhang, Y., Ke, X. Z., Chen, C. F., Yang, J., and Kent, P. R. C., Phys. Rev. B 80, 024304 (2009).CrossRef
Skelton, J. M., Parker, S. C., Togo, A., Tanaka, I., and Walsh, A., Phys. Rev. B 89, 205203 (2014).CrossRef
Shishkin, M. and Kresse, G., Phys. Rev. B 75, 235102 (2007).CrossRef
Preier, H., App. Phys. 20, 189 (1979).CrossRef
Crocker, A. J., Rogers Br, L. M.., J. Appl. Phys. 18, 563 (1967).
Martin, J., Wang, Li., Chen, Lidong, Nolas, G. S., Phys. Rev. B 79, 115311 (2009).CrossRef
Harman, T. C., Spears, D. L., and Manfra, M. J., J. Electron. Mater. 25, 1121 (1996).CrossRef

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Electronic Structure and Transport Properties of Doped Lead Chalcogenides from First Principles
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Electronic Structure and Transport Properties of Doped Lead Chalcogenides from First Principles
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Electronic Structure and Transport Properties of Doped Lead Chalcogenides from First Principles
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *