Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-wlt4x Total loading time: 0.273 Render date: 2021-05-14T08:13:03.929Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Effects of conductive polymer composite layering on EMI shielding during additive manufacturing

Published online by Cambridge University Press:  29 July 2019

Eugene Zakar
Affiliation:
U.S. Army Research Laboratory
Theodore Anthony
Affiliation:
U.S. Army Research Laboratory
Madan Dubey
Affiliation:
U.S. Army Research Laboratory
Corresponding
Get access

Abstract:

Spin coating and drop casting are viable methods for rapid and low-cost additive manufacturing of components for flexible devices and sensors. We investigated the cumulative effects of layering a conductive polymer composite 2 wt% MWCNT filler in PEDOT:PSS on a Mylar substrate for application to electromagnetic interference (EMI) shielding. The optical transmittace of spin coated composite layers is 90%, 45%, and 20% with a thickness of 0.05 µm, 0.15 µm, and 0.45 µm respectively. Drop cast composite layers have 0% transmittance due to their much greater starting thickness of 4.4 µm. The addition of isopropyl alcohol (IPA) to the solution mixture and substrate heating to 40 °C improves the conductivity, and drying time of the cured composite layers to 10 min. This study shows that the cumulative effects of composite layering are additive, but the electrical properties do not scale the same way. A significant increase in the EMI SE is mainly attributed to the enhanced electrical conductivity of the composite. The insertion of a 50 µm gap in between two 15 µm composite layers accentuates the EMI shielding effectiveness (SE) significantly to a peak of 21 dB within a narrow frequency range in the Ku-band tested.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below.

References

Verma, M., Singh, A. P., Sambyal, P., Singh, B. P., Dhawan, S. K., Choudhary, V., Phys. Chem. Chem. Phys., 2015, 17, 1610-1618.CrossRefGoogle Scholar
Yun, D.-J., Hong, K., Kim, S.H., Yun, W.M., Jang, J., Kwon, W.-S., Park, C.E., Rhee, S.-W., ACS Appl. Mater. Interfaces 3 (2011) 4349.CrossRefGoogle Scholar
Yun, D.-J., Rhee, S.-W., ACS Appl. Mater. Interfaces 4 (2012) 982989.CrossRefGoogle Scholar
Yun, D.-J., Ra, H., Rhee, S.-W., Renew. Energy 50 (2013) 692700.CrossRefGoogle Scholar
Yun, D.-J., Jeong, Y.J., Ra, H., Kim, J.M., An, T.K., Seol, M., Jang, J., Park, C.E., Rhee, S.-W., Chung, D.S., J. Mater. Chem. C 3 (2015) 73257335.CrossRefGoogle Scholar
Yun, D.-J., Jeong, Y.J., Ra, H., Kim, J.M., Park, J.H., Park, S., An, T.K., Seol, M., Park, C.E., Jang, J., Chung, D.S., J. Phys. Chem. C 120 (2016) 1091910926.CrossRefGoogle Scholar
Li, Hui, Lu, Xuehong, Yuan, Du, Sun, Jiaotong, Erden, Fuat, Wang, Fuke and He, Chaobin, J. Mater. Chem. C (2017) 5, 8694-8698.CrossRefGoogle Scholar
Yu, Wei, Zhou, Han, Li, Ben Q., and Ding, Shujiang, ACS Appl. Mater. Interfaces (2017) 9 (5), 45974604.CrossRefGoogle Scholar
Lee, Si-Hwa, Kang, Donghoon, Oh, II-Kwon, Carbon (2017) v.111, 248-257.CrossRefGoogle Scholar
Shahzad, M. I., Giorcelli, M., Shahzad, N., Guastella, S., Castellino, M., Jagdale, P., Tagliaferro, A., Journal of Physics: Conference Series 439 (2013) 012010.Google Scholar
Olivares, A., Cosme, I., Mansurova, S., Kosarev, A., Martinez, H. E., Proc. IEEE 12th Int. Conf. on Electrical Engineering, Computing Science and Automatic Control, Mexico City, Mexico (2015). DOI:10.1109/ICEEE.2015.7357949Google Scholar
Zhang, Chengxi, Cheng, Jiang, Liao, Xiaoqing, Lian, Xiaojuan, Zhang, l Jin, Yang, Xin, and Li, Lu, Int J Photoenergy, Volume 2015, Article ID 893916, 7 pages.CrossRefGoogle Scholar
Alemu, Desalegn, Wei, Hung-Yu, Ho, Kuo-Chuan and Chu, Chih-Wei, Energy Environ. Sci. (2012) 5, 9662.CrossRefGoogle Scholar
Zhang, B., Soltani, S.A., Le, L.N., Asmatulu, R., Mater. Sci. Eng. B (2017) 216, 31-40.CrossRefGoogle Scholar
Hu, Guohua, Kang, Joohoon, Ng, Leonard W. T., Zhu, Xiaoxi, Howe, Richard C. T., Jones, Christopher G., Hersam, Mark C., and Hasan, Tawfique, Chem. Soc. Rev. (2018) 47, 3265-3300.CrossRefGoogle Scholar
Feng, Wanlin, Luo, Heng, Wang, Yu, Zeng, Sifan, Deng, Lianwen, Zhou, Xiaosong, Zhang, Haibin Peng, Shuming, RSC Adv. (2018) 8, 2398-2403.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effects of conductive polymer composite layering on EMI shielding during additive manufacturing
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Effects of conductive polymer composite layering on EMI shielding during additive manufacturing
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Effects of conductive polymer composite layering on EMI shielding during additive manufacturing
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *