Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-25T15:46:07.401Z Has data issue: false hasContentIssue false

Effects of alumina sources (gibbsite, boehmite, and corundum) on melting behavior of high-level radioactive waste melter feed

Published online by Cambridge University Press:  23 December 2016

SeungMin Lee*
Affiliation:
Radiological Material & Detection Group, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A.
Pavel Hrma
Affiliation:
Radiological Material & Detection Group, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A.
Richard Pokorny
Affiliation:
Laboratory of Inorganic Materials, joint workplace of the University of Chemistry and Technology and the Institute of Rock Structure and Mechanics of the ASCR, V Holešovičkách 41, 182 09 Prague 8, Czech Republic
Jaroslav Klouzek
Affiliation:
Laboratory of Inorganic Materials, joint workplace of the University of Chemistry and Technology and the Institute of Rock Structure and Mechanics of the ASCR, V Holešovičkách 41, 182 09 Prague 8, Czech Republic
Bradley J. VanderVeer
Affiliation:
Radiological Material & Detection Group, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A.
Carmen P. Rodriguez
Affiliation:
Radiological Material & Detection Group, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A.
Jaehun Chun
Affiliation:
Radiological Material & Detection Group, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A.
Michael J. Schweiger
Affiliation:
Radiological Material & Detection Group, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A.
Albert A. Kruger
Affiliation:
U.S. Department of Energy, Office of River Protection, Richland, WA 99352, U.S.A.
Get access

Abstract

Types of melter feed materials affect glass production rates. This study focuses on the effects of alumina sources on melting behavior of high-alumina high-level-waste melter feeds containing different alumina sources, namely, gibbsite, boehmite, and corundum. The heat flow from the glass melt to the cold cap, a floating layer of the reacting feed, is partially hindered by a foam layer at the bottom of the cold cap. Volume expansion tests and thermoanalytical methods revealed that a slow-melting feed with corundum foamed extensively, whereas a fast-melting feed with boehmite had a low reaction heat and produced less stable foam. The foam thickness, a critical factor for the rate of melting, estimated using the relationship between the heat conductivity and foam porosity was in reasonable agreement with experimental observation.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kruger, A. A., WM2013 Conf. Proc.. (2013).Google Scholar
Schweiger, M. J., Hrma, P., Kim, D., Vienna, J. D., Matyas, J., et al., MS&T2015 Conf. (2015).Google Scholar
Lee, S., VanderVeer, B. J., Hrma, P., Hilliard, Z., Heilman-Moore, J. S., et al., J. Am. Ceram. Soc. 1-7 (2016); doi: 10.1111/jace.14629.Google Scholar
Pokorny, R., Hilliard, Z. J., Dixon, D. R., Schweiger, M. J., Guillen, D. P., et al., J. Am. Ceram. Soc. 98, 31123118 (2015).Google Scholar
Pokorny, R. and Hrma, P., J. Nucl. Mater. 445, 190199 (2014).Google Scholar
Hrma, P., Schweiger, M. J., Humrickhouse, C. J., Moody, J. A., Tate, R. M., et al., Ceram.–Silikaty, 54 (3), 193211 (2010).Google Scholar
Matlack, K. S., Gan, H., Chaudhuri, M., Kot, W., Gong, W., et al., (Washington, DC, and Columbia, MD, VSL-10R1690–1, 2010).Google Scholar
Pierce, D. A., Hrma, P., Marcial, J, Riley, B. J., and Schweiger, M. J., Int. J. Appl. Glass Sci. 3 (1), 5968 (2012).Google Scholar
Hilliard, Z. and Hrma, P., J. Am. Ceram. Soc. 99, 98105 (2016).Google Scholar
Rice, J. A., Pokorny, R., Schweiger, M. J., and Hrma, P., J. Am. Ceram. Soc. 97 (6), 19521958 (2014).Google Scholar
Schweiger, M. J., Hrma, P., Humrickhouse, C. J., Marcial, J., Riley, B. J., and TeGrotenhuis, N. E., J. Non-Cryst. Solids 356, 13591367 (2010).Google Scholar
Rodriguez, C. P., Chun, J., Schweiger, M. J., and Kruger, A. A., Thermochim. Acta 592, 8692 (2013).Google Scholar
Loeb, A. L., Am, J.. Ceram. Soc. 37, 9699 (1954).Google Scholar
Watanabe, K., Yano, T., Takeshita, K., Minami, K., and Ochi, E., Glass Technol. : Eur. J. Glass Sci. Technol. A 53 (6), 273278 (2012).Google Scholar