Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-2fphr Total loading time: 0.293 Render date: 2021-06-20T14:12:41.115Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Article contents

Effect of Carboxylic Acids on Reactive Transfer Printing of Copper Formate Ink

Published online by Cambridge University Press:  11 January 2018

Yitzchak S. Rosen
Affiliation:
The Hebrew University of Jerusalem, Casali Center of Applied Chemistry, Institute of Chemistry, Jerusalem 91904, Israel.
Shlomo Magdassi
Affiliation:
The Hebrew University of Jerusalem, Casali Center of Applied Chemistry, Institute of Chemistry, Jerusalem 91904, Israel.
Corresponding
E-mail address:
Get access

Abstract

During decomposition of copper formate, a volatile intermediate is formed, that can be utilized to fabricate conductive copper lines for electrical interconnections. By the method called Reactive Transfer Printing (RTP), a pattern of copper (II) formate was printed, and placed adjacent to a second surface; decomposition of the printed pattern led to a transfer of copper to the second substrate. It was found that the yield of the transfer process improved due to presence of several carboxylic acids which are liquid with a high boiling point. Furthermore we found that the transport of copper starts at a lower temperature than previously reported, indicating that the first decomposition step of copper formate is related to the catalytic decomposition of formic acid on a copper surface. The findings enable printing of conductive copper patterns onto the interior surface of a glass vessel.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below.

References

KÖSY, F., Nature 160, 21 (1947).CrossRefGoogle Scholar
Keller, A. and Korosy, F., Nature 162 (4119), 580 (1948).CrossRefGoogle Scholar
Edwards, D. and Richards, R., Inorg. Nucl. Chem. Lett. 8 (9), 783 (1972).CrossRefGoogle Scholar
Brown, M. E., Dollimore, D. and Galwey, A. K., Reactions in the solid state. (Elsevier, 1980).Google Scholar
Galwey, A. K. and Brown, M. E., Thermal decomposition of ionic solids: chemical properties and reactivities of ionic crystalline phases. (Elsevier, 1999).Google Scholar
Rosen, Y., Grouchko, M. and Magdassi, S., Adv. Mater. Interfaces 2 (3) (2015). 10.1002/admi.201400448 CrossRefGoogle Scholar
Rosen, Y. S., Lidor, Y., Balter, R., Szeskin, A., Awadallah, A., Shacham-Diamand, Y. and Magdassi, S., Flex. Print. Electron. 2 (3), 035007 (2017).CrossRefGoogle Scholar
Rappoport, Z. and Frankel, M., 1967. CRC handbook of tables for organic compound identification (p. 576). CRC Press. Inc Google Scholar
Aldrich Catalog Handbook of Fine Chemicals, (Aldrich Chemical Company, Milwaukee WI, 1990, 1).Google Scholar
Low, M., Brown, K. and Inoue, H., J. Colloid Interface Sci. 24 (2), 252 (1967).CrossRefGoogle Scholar
Joyner, R. and Roberts, M., Proc. R. Soc. Lond. A. 350, 107 (1976).CrossRefGoogle Scholar
Dubois, L. H., Ellis, T. H., Zegarski, B. R., Kevan, S. D., Surf. Sci., 172(2), 385 (1986).CrossRefGoogle Scholar
Nelson, W.L., Engelder, C.J., J. Phys. Chem. 30, 470 (1926).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effect of Carboxylic Acids on Reactive Transfer Printing of Copper Formate Ink
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Effect of Carboxylic Acids on Reactive Transfer Printing of Copper Formate Ink
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Effect of Carboxylic Acids on Reactive Transfer Printing of Copper Formate Ink
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *