Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-5kt27 Total loading time: 0.29 Render date: 2021-09-24T09:30:53.547Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Co-doping effect on the electronic properties of nonstoichiometric tin telluride

Published online by Cambridge University Press:  03 June 2019

Dana Ben-Ayoun*
Affiliation:
Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva84105, Israel
Yaniv Gelbstein
Affiliation:
Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva84105, Israel
*
*Correspondence:danabenayoun@gmail.com
Get access

Abstract

The search for nontoxic compositions in the thermoelectric field has motivated many researches to find alternatives to the toxic Pb-based systems, capable of reaching their high conversion efficiency. SnTe is gaining much attention during the past years due to its superior eco-friendly character, and its very similar crystal and band structure to that of PbTe. These makes SnTe a promising compound with great potential to answer the demand and use as a fair thermoelectric candidate. Most of the recently published studies mainly discuss the stoichiometric SnTe alloy. Only several focus on the effect of introducing excess tin/tellurium to the system. For that reason, this research aims to investigate in detail the nonstoichiometric SnxTe1-x co-doped by bismuth and indium/iodine, in an attempt to optimize the electronic properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sadia, Y., Ohaion-Raz, T., Ben-Yehuda, O., Korngold, M., and Gelbstein, Y., J. Solid State Chem. 241, 79 (2016).CrossRefGoogle Scholar
Gelbstein, Y., J. Appl. Phys. 023713, 1 (2009).Google Scholar
Tan, G., Zhao, L.D., Shi, F., Doak, J.W., Lo, S.H., Sun, H., Wolverton, C., Dravid, V.P., Uher, C., and Kanatzidis, M.G., J. Am. Chem. Soc. 136, 7006 (2014).CrossRefGoogle Scholar
Banik, A., Shenoy, U.S., Anand, S., Waghmare, U. V., and Biswas, K., Chem. Mater. 27, 581 (2015).CrossRefGoogle Scholar
Al Rahal Al Orabi, R., Mecholsky, N.A., Hwang, J., Kim, W., Rhyee, J.S., Wee, D., and Fornari, M., Chem. Mater. 28, 376 (2016).CrossRefGoogle Scholar
Kuropatwa, B.A. and Kleinke, H., J. Inorg. Gen. Chem. 638, 2640 (2012).Google Scholar
Zhou, X., Deng, Y., Nan, C., and Lin, Y., J. Alloys Compd. 352, 328 (2003).CrossRefGoogle Scholar
Zhou, Xisong, Nan, Jun, Wu, Junbo, and Nan, Ce Wen, in 20th Int. Conf. Thermoelectr. (2001), pp. 109112.Google Scholar
Ben-Ayoun, D. and Gelbstein, Y., in Thermoelectr. Power Gener., edited by Memon, S. (IntechOpen, London, UK, 2019), pp. 110.Google Scholar
Freik, D.M., Mudryi, S.I., Gorichok, I.V., Prokopiv, V.V., Matkivsky, O.M., Arsenjuk, I.O., Krynytsky, О.S., and Bojchyk, V.M., Ukr. J. Phys. 61, 155 (2016).CrossRefGoogle Scholar
Zhou, Z., Yang, J., Jiang, Q., Luo, Y., Zhang, D., Ren, Y., He, X., and Xin, J., J. Mater. Chem. A 4, 13171 (2016).CrossRefGoogle Scholar
Shimazaki, H. and Ozawa, T., Am. Mineral. 63, 1162 (1978).Google Scholar
Shannon, R.D., Acta Crystallogr. A, 751 (1976).CrossRefGoogle Scholar
Gelbstein, Y., in Thermoelectr. Power Gener., edited by Skipidarov, S. and Nikitin, M. (IntechOpen, London, UK, 2016), pp. 287302.Google Scholar
Gelbstein, Y., Dashevsky, Z., and Dariel, M.P., Phys. B Condens. Matter 363, 196 (2005).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Co-doping effect on the electronic properties of nonstoichiometric tin telluride
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Co-doping effect on the electronic properties of nonstoichiometric tin telluride
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Co-doping effect on the electronic properties of nonstoichiometric tin telluride
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *