Hostname: page-component-7d684dbfc8-w65q4 Total loading time: 0 Render date: 2023-09-22T09:45:22.975Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Catalytic Reduction of CO2 into Solar Fuels via Ferrite Based Thermochemical Redox Reactions

Published online by Cambridge University Press:  15 May 2017

Rahul R. Bhosale*
Affiliation:
Department of Chemical Engineering, Qatar University, Doha, Qatar.
Anand Kumar
Affiliation:
Department of Chemical Engineering, Qatar University, Doha, Qatar.
Fares AlMomani
Affiliation:
Department of Chemical Engineering, Qatar University, Doha, Qatar.
Majeda Khraisheh
Affiliation:
Department of Chemical Engineering, Qatar University, Doha, Qatar.
Ivo Alxneit
Affiliation:
Bioenergy and Catalysis Laboratory, Paul Scherrer Institute, CH-5232 Villigen, Switzerland.
Get access

Abstract

In this study, Ni based ferrite nanomaterials were synthesized using sol-gel method for solar thermochemical splitting of CO2 using a thermogravimetric analyzer. To synthesize the ferrite materials, the corresponding metal precursors were dissolved in ethanol (with required molar ratios). After achieving the dissolution, propylene oxide (PO) was added to achieve the gel formation. Freshly synthesized gels were aged, dried, and calcined by heating up to 600°C in air. Powder x-ray diffractometer (XRD), BET surface area, as well as scanning (SEM) and transmission (TEM) electron microscopy characterized the calcined powders. The sol-gel derived ferrites were further tested towards their thermal reduction and CO2 splitting ability using a high temperature thermogravimetric analyzer (TGA).

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dry, M.E., Catal. Today. 71, 227241 (2002).CrossRef
Steinfeld, A., Sol. Energy. 78, 603615 (2005).CrossRef
Scheffe, J.R., Steinfeld, A., Mater. Today. 17, 341348 (2014).CrossRef
Agrafiotis, C.C., Pagkoura, C., Zygogianni, A., Karagiannakis, G., Kostoglou, M., Konstandopoulos, A.G., Int. J. Hydrogen Energy. 37, 89648980 (2012).CrossRef
Agrafiotis, C., Zygogianni, A., Pagkoura, C., Kostoglou, M., Konstandopoulos, A.G., AIChE J. 59, 12131225 (2013).CrossRef
Allen, K.M., Coker, E.N., Auyeung, N., Klausner, J.F., JOM. 65, 16701681 (2013).CrossRef
Allendorf, M.D., Diver, R.B., Siegel, N.P., Miller, J.E., Energy Fuels. 22, 41154124 (2008).CrossRef
Arifin, D., Aston, V.J., Liang, X., McDaniel, A.H., Weimer, A.W., Energy Environ. Sci. 5, 94389443 (2012).CrossRef
Bhosale, R.R., Shende, R.V., Puszynski, J.A., Int. Rev. Chem. Eng. 2, 852 (2010).
Bhosale, R.R., Alxneit, I., Broeke, van den, LP, Leo, Kumar, A., Jilani, M., Gharbia, S.S., Folady, J., Dardor, D.Z., Mater. Res. Soc. Symp. Proc. 1675 (2014).CrossRef
Bhosale, R.R., Kumar, A., AlMomani, F., Alxneit, I., Ceram. Int. 42, 24312438 (2016).CrossRef
Bhosale, R.R., Shende, R.V., Puszynski, J.A., Int. J. Hydrogen Energy. 37, 29242934 (2012).CrossRef
Bhosale, R. R., Khadka, R., Puszynski, J., Shende, R., J. Renewable Sustainable Energy. 3 063104–01 (2011).CrossRef
Neises, M., Roeb, M., Schmücker, M., Sattler, C., Pitz-Paal, R., Int. J. Energy Res. 34, 651661 (2010).
Scheffe, J.R., Allendorf, M.D., Coker, E.N., Jacobs, B.W., McDaniel, A.H., Weimer, A.W., Chem. Mater. 23, 20302038 (2011).CrossRef
Bhosale, R. R., Shende, R., Puszynski, J., Mater. Res. Soc. Symp. Proc. 1387 (2012).CrossRef
Sano, T., Kojima, M., Hasegawa, N., Tsuji, M., Tamaura, Y., Int. J. Hydrogen Energy. 21, 781787 (1996).CrossRef
Gokon, N., Takahashi, S., Yamamoto, H., Kodama, T., Int. J. Hydrogen Energy. 33, 21892199 (2008).CrossRef
Fresno, F., Fernández-Saavedra, R., Gómez-Mancebo, M.B., Vidal, A., Sánchez, M., Rucandio, M.I., Quejido, A.J., Romero, M., Int. J. Hydrogen Energy. 34, 29182924 (2009).CrossRef
Steinfeld, A., Kuhn, P., Reller, A., Palumbo, R., Murray, J., Tamaura, Y., Int. J. Hydrogen Energy. 23, 767774 (1998).23CrossRef
Tamaura, Y., Hasegawa, N., Kojima, M., Ueda, Y., Amano, H., Tsuji, M., Energy. 23, 879886 (1998).CrossRef
Tamaura, Y., Energy. 20, 325330 (1995).CrossRef
Agrafiotis, C., Roeb, M., Konstandopoulos, A. G., Nalbandian, L., Zaspalis, V.T., Sattler, C., Stobbe, P., Steele, A. M., Sol. Energy. 79, 409421 (2005).CrossRef
Le Gal, A., Abanades, S., Flamant, G., Energy Fuels 25 48364845 (2011).CrossRef
Abanades, S., Le Gal, A., Fuel 102 180186 (2012).CrossRef
Bhosale, R. R., Kumar, A., AlMomani, F., Ghosh, U., Al-Muhtaseb, S., Gupta, R., Alxneit, I., Ceram. Int. 42, 93549362 (2016).CrossRef