Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-d8fc5 Total loading time: 0.208 Render date: 2021-09-21T20:19:39.293Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Carbon Nanoscrolls at High Impacts: A Molecular Dynamics Investigation

Published online by Cambridge University Press:  17 March 2016

José Moreira de Sousa
Affiliation:
Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas - SP, 13083-970, Brazil
Leonardo Dantas Machado
Affiliation:
Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas - SP, 13083-970, Brazil Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal-RN 59072-970, Brazil
Cristiano Francisco Woellner*
Affiliation:
Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas - SP, 13083-970, Brazil
Pedro Alves da Silva Autreto
Affiliation:
Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas - SP, 13083-970, Brazil Universidade Federal do ABC, Santo André-SP, 09210-580, Brazil
Douglas S. Galvao
Affiliation:
Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Campinas - SP, 13083-970, Brazil
*Corresponding
Get access

Abstract

The behavior of nanostructures under high strain-rate conditions has been object of interest in recent years. For instance, recent experimental investigations showed that at high velocity impacts carbon nanotubes can unzip resulting into graphene nanoribbons. Carbon nanoscrolls (CNS) are among the structures whose high impact behavior has not yet been investigated. CNS are graphene membranes rolled up into papyrus-like structures. Their unique open-ended topology leads to properties not found in close-ended structures, such as nanotubes. Here we report a fully atomistic reactive molecular dynamics study on the behavior of CNS colliding at high velocities against solid targets. Our results show that the velocity and scroll axis orientation are key parameters to determine the resulting formed nanostructures after impact. The relative orientation of the scroll open ends and the substrate is also very important. We observed that for appropriate velocities and orientations, the nanoscrolls can experience large structural deformations and large-scale fractures. We have also observed unscrolling (scrolls going back to planar or quasi-planar graphene membranes), unzip resulting into nanoribbons, and significant reconstructions from breaking and/or formation of new chemical bonds. Another interesting result was that if the CNS impact the substrate with their open ends, for certain velocities, fused scroll walls were observed.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V, Grigorieva, I. V, and Firsov, A. A., Science, 2004, 306, 666.CrossRef
Vinod, S., Tiwary, C. S., Autreto, P. A. S., Taha-Tijerina, J., Ozden, S., Chipara, A. C., Vajtai, R., Galvao, D. S., Narayanan, T. N., and Ajayan, P. M., Nature Commun., 2014, 5, 4541.CrossRef
Lee, J.-H., Loya, P. E., Lou, J., and Thomas, E. L., Science, 2014, 346, 1092.CrossRefPubMed
Ozden, S., Autreto, P. A. S., Tiwary, C. S., Khatiwada, S., Machado, L. D., Galvao, D. S., Vajtai, R., Barrera, E. V., and Ajayan, P. M.. Nano Letters, 2014, 14, 4131.CrossRef
Viculis, L. M., Mack, J. J., and Kaner, R. B., Science, 2003, 299, 1361.CrossRef
Tomanek, D., Physica B, 2002, 323, 86.CrossRef
Braga, S. F., Coluci, V. R., Legoas, S. B., Giro, R., Galvao, D. S., and Baughman, R. H., Nano Lett., 2004, 4, 881.CrossRef
Martins, B. V. C. and Galvao, D. S., Nanotechnology, 2010, 21, 075710.CrossRef
Perim, E., Machado, L. D. and Galvao, D. S., Frontiers in Materials, 2014, 1, 31.CrossRef
Jayasena, B., Subbiah, S., and Reddy, C. D., J. Micro and Nano-Manufact., 2014, 2, 011003.CrossRef
Rurali, R., Coluci, V. R., and Galvao, D. S., Phys. Rev. B, 2006, 74, 085414.
Coluci, V. R., Braga, S. F., Baughman, R. H., and Galvao, D. S., Phys. Rev. B, 2007, 75, 125404.CrossRef
Perim, E. and Galvao, D. S., Nanotechnology 2009, 20, 335702.CrossRef
Van Duin, A. C. T., Dasgupta, S., Lorant, F., and Goddard, W. A., J. Phys. Chem. A, 2001, 105, 9396.CrossRef
Plimpton, S., J. Comp. Phys., 1995, 117, 1.CrossRef
16. http://www.Lammps.sandia.gov. Sandia National Laboratories, LAMMPS Users Manual, 2014, vol. 209.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Carbon Nanoscrolls at High Impacts: A Molecular Dynamics Investigation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Carbon Nanoscrolls at High Impacts: A Molecular Dynamics Investigation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Carbon Nanoscrolls at High Impacts: A Molecular Dynamics Investigation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *