Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-29T09:37:23.326Z Has data issue: false hasContentIssue false

Żabińskiite, ideally Ca(Al0.5Ta0.5)(SiO4)O, a new mineral of the titanite group from the Piława Górna pegmatite, the Góry Sowie Block, southwestern Poland

Published online by Cambridge University Press:  02 January 2018

Adam Pieczka*
Affiliation:
AGH University of Science and Technology, Department of Mineralogy, Petrography and Geochemistry, 30-059 Kraków, Mickiewicza 30, Poland
Frank C. Hawthorne
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
Chi Ma
Affiliation:
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, 91125-2500, California, USA
George R. Rossman
Affiliation:
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, 91125-2500, California, USA
Eligiusz Szełęg
Affiliation:
University of Silesia, Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, 41-200 Sosnowiec, Będzińska 60, Poland
Adam Szuszkiewicz
Affiliation:
University of Wrocław, Institute of Geological Sciences, 50-204 Wrocław, M. Borna 9, Poland
Krzysztof Turniak
Affiliation:
University of Wrocław, Institute of Geological Sciences, 50-204 Wrocław, M. Borna 9, Poland
Krzysztof Nejbert
Affiliation:
University of Warsaw, Faculty of Geology, Institute of Geochemistry, Mineralogy and Petrology, 02-089 Warszawa, Żwirki and Wigury 93, Poland
Sławomir Ilnicki
Affiliation:
University of Warsaw, Faculty of Geology, Institute of Geochemistry, Mineralogy and Petrology, 02-089 Warszawa, Żwirki and Wigury 93, Poland
Philippe Buffat
Affiliation:
AGH University of Science and Technology, International Centre of Electron Microscopy for Materials Science, Department of Physical and Powder Metallurgy, 30-059 Kraków, Mickiewicza 30, Poland
Bogdan Rutkowski
Affiliation:
AGH University of Science and Technology, International Centre of Electron Microscopy for Materials Science, Department of Physical and Powder Metallurgy, 30-059 Kraków, Mickiewicza 30, Poland
*

Abstract

Żabińskiite, ideally Ca(Al0.5Ta0.5)(SiO4)O, was found in a Variscan granitic pegmatite at Piława Górna, Lower Silesia, SW Poland. The mineral occurs along with (Al,Ta,Nb)- and (Al,F)-bearing titanites, a pyrochlore-supergroupmineral and a K-mica in compositionally inhomogeneous aggregates, ∼120 μm × 70 μm in size, in a fractured crystal of zircon intergrown with polycrase-(Y) and euxenite-(Y). Żabińskiite is transparent, brittle, brownish, with a white streak, vitreous lustre and a Mohs hardness of ∼5. The calculated density for the refined crystal is equal to 3.897 g cm–3, but depends strongly on composition. The mineral is non-pleochroic, biaxial (–), with mean refractive indices ≥1.89. The (Al,Ta,Nb)-richest żabińskiite crystal,(Ca0.980Na0.015)∑=0.995(Al0.340Fe3+0.029Ti0.298V0.001Zr0.001Sn0.005Ta0.251Nb0.081)∑=1.005[(Si0.988Al0.012)O4.946F0.047(OH)0.007)∑=5.000];60.7 mol.% Ca[Al0.5(Ta,Nb)0.5](SiO4)O; is close in composition to previously described synthetic material. Żabińskiite is triclinic (space group symmetry A1) and has unit-cell parameters a = 7.031(2) Å, b = 8.692(2) Å,c = 6.561(2) Å, α = 89.712(11)°, β = 113.830(13)°, γ = 90.352(12)° and V = 366.77 (11) Å3. It is isostructural with triclinic titanite and bond-topologically identical with titanite and other minerals of the titanite group.Żabińskiite crystallized along with (Al,Ta,Nb)-bearing titanites at increasing Ti and Nb, and decreasing Ta activities, almost coevally with polycrase-(Y) and euxenite-(Y) from Ca-contaminated fluxed melts or early hydrothermal fluids.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aftalion, M. and Bowes, D.R. (2002) U-Pb zircon isotopic evidence for Mid-Devonian migmatite formation in the Gory Sowie domain of the Bohemian Massif, Sudeten Mountains, SW Poland. Neues Jahrbuch für Mineralogie, Monatshefte, 4, 182192.CrossRefGoogle Scholar
Alexander, J.B. and Flinter, B.H. (1965) A note on varlamoffite and associated minerals from the Batang Padang district, Perak, Malaya, Malaysia. Mineralogical Magazine, 35, 622627.CrossRefGoogle Scholar
Bartelmehs, K.L., Bloss, F.D., Downs, R.T. and Birch, J.B. (1992) EXCALIBRII. ZeitschriftfürKristallographie, 199, 185196.Google Scholar
Basso, R., Lucchetti, G., Zefiro, L. and Palenzona, A. (1994) Vanadomalayaite, CaVOSiO4, a new mineral vanadium analog of titanite and malayaite. Neues Jahrbuch für Mineralogie Monatshefte, 489498.Google Scholar
Beirau, T., Mihailova, B., Malcherek, T., Paulmann, C., Bismayer, U. and Groat, L.A. (2014) Temperature-induced P21/c to C2/c phase transition in partially amorphous (metamict) titanite revealed by Raman spectroscopy. The Canadian Mineralogist, 52, 91100.CrossRefGoogle Scholar
Bernau, R. and Franz, G. (1987) Crystal chemistry and genesis of Nb-, V-, and Al-rich metamorphic titanite from Egypt and Greece. The Canadian Mineralogist, 25, 695705.Google Scholar
Bismayer, U., Schmahl, W., Schmidt, C. and Groat, L.A. (1992) Linear birefringence and X-ray diffraction studies of the structural phase transition in titanite, CaTiSiO5 . Physics and Chemistry of Minerals, 19, 260266.CrossRefGoogle Scholar
Brady, J.B. and Cherniak, D.J. (2010) Diffusion in minerals: An overview of published experimental diffusion data. Pp. 899920 in: Diffusion in Minerals and Melts (Y. Zhang and D.J. Cherniak, editors). Reviews in Mineralogy & Geochemistry, 72. Mineralogical Society of America, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Bröcker, M., Zelazniewicz, A. and Enders, M. (1998) Rb-Sr and U—Pb geochronology of migmatitic gneisses from the Góry Sowie (West Sudetes, Poland): the importance of Mid-Late Devonian metamorphism. Journal of the Geological Society, London, 155, 10251036.CrossRefGoogle Scholar
Brueckner, H.K., Blusztajn, I and Bakun-Czubarow, N. (1996) Trace element and Sm—Nd “age” zoning in garnets from peridotites of the Caledonian and Variscan mountains and tectonic implications. Journal of Metamorphic Geology, 14, 6173.CrossRefGoogle Scholar
Cempírek, J., Houzar, S. and Novák, M. (2008) Complexly zoned niobian titanite from hedenbergite skarn at Písek, Czech Republic, constrained by substitution Al(Nb,Ta)Ti_2, Al(F,OH)(TiO)_! and SnTi_j. Mineralogical Magazine, 72, 12931305.CrossRefGoogle Scholar
Černý, P. and Riva di Sanseverino, L. (1972) Comments on crystal chemistry of titanite. Neues Jahrbuch für Mineralogie Monatshefte, 97-103.Google Scholar
Černý, P., Novák, M. and Chapman, R. (1995) The Al (Nb,Ta)Ti 2 substitution in titanite: the emergence of a new species. Mineralogy and Petrology, 52, 6173.CrossRefGoogle Scholar
Chakhmouradian, A.R. (2004) Crystal chemistry and paragenesis of compositionally-unique (Al-, Fe-, Nb-, and Zr-rich) titanite from Afrikanda, Russia. American Mineralogist, 89, 17521762.CrossRefGoogle Scholar
Chakhmouradian, A.R. and Zaitsev, A.N. (2002) Calcite-amphibole-clinopyroxene rock from Afrikanda Complex, Kola peninsula, Russia: mineralogy and possible link to carbonatites. III. Silicate minerals. The Canadian Mineralogist, 40, 13471374.CrossRefGoogle Scholar
Chakhmouradian, A.R., Reguir, E.P. and Mitchell, R.H. (2003) Titanite in carbonatitic rocks: Genetic dualism and geochemical significance. Periodico di Mineralogia, 72, Eurocarb Special Issue, 107113.Google Scholar
Clark, A.M. (1974) A tantalum-rich variety of sphene. Mineralogical Magazine, 39, 605607.CrossRefGoogle Scholar
Della Ventura, G., Bellatreccia, F. and Williams, C.T. (1999) Zr-andLREE-rich titanite from Tre Croci, Vico volcanic complex (Latinum, Italy). Mineralogical Magazine, 63, 123130.CrossRefGoogle Scholar
Ellemann-Olesen, R. and Malcherek, T (2005) Temperature and composition dependence of struc-tural phase transition in Ca(TixZr1_x)OGeO4 . American Mineralogist, 90, 687694.CrossRefGoogle Scholar
Gaines, R.V., Skinner, H.C., Foord, E.E., Mason, B. and Rosenzweig, A. (1997) Dana's New Mineralogy. Eighth Edition, John Wiley & Sons, Inc, USA.Google Scholar
Gordon, S.M., Schneider, D.A., Manecki, M. and Holm, D.K. (2005) Exhumation and metamorphism of an ultrahigh—grade terrane: geochronometric investigations of the Sudetes Mountains (Bohemia), Poland and Czech Republic. Journal of the Geological Society, London, 162, 841855.CrossRefGoogle Scholar
Groat, L.A., Carter, R.T., Hawthorne, F.C. and Ercit, T.S. (1985) Tantalian niobian titanite from Irgon claim, southeastern Manitoba. The Canadian Mineralogist, 23, 569571.Google Scholar
Hatert, F. and Burke, E.A.J. (2008) The IMA-CNMNC dominant-constituent rule revisited and extended. The Canadian Mineralogist, 46, 717728.CrossRefGoogle Scholar
Hawthorne, F.C., Ungaretti, L. and Oberti, R. (1995) Site populations in minerals: terminology and presentation of results of crystal-structure refinement. The Canadian Mineralogist, 33, 907911.Google Scholar
Higgins, J.B. and Ribbe, P.H. (1976) The crystal chemistry and space group of natural and synthetic titanites. American Mineralogist, 61, 878888.Google Scholar
Higgins, J.B. and Ribbe, P.H. (1977) The structure of malayaite, CaSnOSiO4, a tin analog of titanite. American Mineralogist, 62, 801806.Google Scholar
Hollabaugh, C.L. and Foit, Jr., F.F. (1984) The crystal structure of an Al-rich titanite from Grisons, Switzerland. American Mineralogist, 69, 725732.Google Scholar
Houzar, S., Litochleb, J., Sejkora, J., Cempírek, J. and Cícha, J. (2008) Unusual mineralization with niobian titanite and Bi-tellurides in scheelite skarn from Kamenné doly quarry near Písek, Moldanubian Zone, Bohemian Massif. Journal of Geosciences, 53, 116.Google Scholar
Kek, S., Aroyo, M., Bismayer, U., Schmidt, C., Eichhorn, K. and Krane, H.G. (1997) The two-step phase transition of titanite, CaTiSiO5: a synchrotron radiation study. Zeitschrift für Kristallographie, 212, 919.Google Scholar
Kryza, R. (1981) Migmatization in gneisses of the northern part of the Sowie Góry, Sudetes. Geologia Sudetica, 16, 791 [in Polish, English summary].Google Scholar
Kryza, R. and Fanning, C.M. (2007) Devonian deep-crustal metamorphism and exhumation in the Variscan Orogen: evidence from SHRIMP zircon ages from the HT-HP granulites and migmatites of the Góry Sowie (Polish Sudetes). Geodinamica Acta, 20, 159176.CrossRefGoogle Scholar
Liferovich, R.P. and Mitchell, R.H. (2006a) Tantalum-bearing titanite: synthesis and crystal structure data. Physics and Chemistry of Minerals, 33, 7383.CrossRefGoogle Scholar
Liferovich, R.P. and Mitchell, R.H. (2006b) Crystal structure of a synthetic aluminoan tantalian titanite: a reconnaissance study. Mineralogical Magazine, 70, 115121.CrossRefGoogle Scholar
Lussier, A.J., Cooper, M.A., Hawthorne, F.C. and Kristiansen, R. (2009) Triclinic titanite from the Heftetjern granitic pegmatite, Tørdal, Southern Norway. Mineralogical Magazine, 73, 709722.CrossRefGoogle Scholar
Ma, C. and Rossman, G.R. (2008) Barioperovskite, BaTiO3, a new mineral from the Benitoite Mine, California. American Mineralogist, 93, 154157.CrossRefGoogle Scholar
Ma, C. and Rossman, G.R. (2009) Tistarite, Ti2O3, a new refractory mineral from the Allende meteorite. American Mineralogist, 94, 841844.CrossRefGoogle Scholar
Markl, G. and Piazolo, S. (1999) Stability of high-Al titanite from low-pressure calcsilicates in light of fluid and host-rock composition. American Mineralogist, 84, 37–7.CrossRefGoogle Scholar
Mazur, S., Aleksandrowski, P., Kryza, R. and Oberc-Dziedzic, T (2006) The Variscan orogen in Poland. Geological Quarterly, 50, 89118.Google Scholar
Meyer, H.W., Zhang, M., Bismayer, U., Salje, E.K.H., Schmidt, C., Kek, S., Morgenroth, W. and Bleser, T. (1996) Phase transformation of natural titanite: an infrared, Raman spectroscopic, optical birefringence and X-ray diffraction study. Phase Transitions, 59, 3960.CrossRefGoogle Scholar
O'Brien, P.J., Kröner, A., Jaeckel, P., Hegner, E., Żelazniewicz, A. and Kryza, R. (1997) Petrological and isotope studies on Palaeozoic high-pressure granulites. Góry Sowie Mts, Polish Sudetes. Journal of Petrology, 38, 433–56.CrossRefGoogle Scholar
Paul, B.J., Černý, P., Chapman, R. and Hinthorne, J.R. (1981) Niobian titanite from the Huron Claim pegmatite, southeastern Manitoba. The Canadian Mineralogist, 19, 549552.Google Scholar
Pieczka, A., Szuszkiewicz, A., Szełeg, E., Nejbert, K., Lodzinski, M., Ilnicki, S., Turniak, K., Banach, M., Hołub, W., Michałowski, P. and Różniak, R. (2013) (Fe,Mn)—(Ti,Sn)—(Nb,Ta) oxide assemblage in a little fractionated portion of a mixed (NYF + LCT) pegmatite from Piława Górna, the Sowie Mts. block, SW Poland. Journal of Geosciences, 58, 91112.CrossRefGoogle Scholar
Pieczka, A., Szuszkiewicz, A., Szełeg, E., Ilnicki, S., Nejbert, K. and Turniak, K. (2014) Samarskite-group minerals and alteration products: an example from the Julianna pegmatitic system, Piława Górna, SW Poland. The Canadian Mineralogist, 52, 303319.CrossRefGoogle Scholar
Pieczka, A., Hawthorne, F.C., Cooper, M., Szełeg, E., Szuszkiewicz, A., Turniak, K., Nejbert, K. and Ilnicki, S. (2015a) Pilawite-(Y), Ca2(Y,Yb)2[Al4(SiO4)4O2 (OH)2], a new mineral from the Piława Górna granitic pegmatite, southwestern Poland: mineralogical data, crystal structure and association. Mineralogical Magazine, 79, 11431157.CrossRefGoogle Scholar
Pieczka, A., Hawthorne, F.C., Ma, C., Rossman, G.R., Buffat, P., Rutkowski, B., Szełeg, E., Szuszkiewicz, A., Turniak, K., Nejbert, K. and Ilnicki, S.S. (2015b) Zabinskiite, IMA 2015-033. CNMNC Newsletter No. 26, August 2015, page 945; Mineralogical Magazine, 79, 941947.CrossRefGoogle Scholar
Pieczka, A., Szuszkiewicz, A., Szełeg, E., Janeczek, J. and Nejbert, K. (2015c) Granitic pegmatites of the Polish part of the Sudetes (NE Bohemian massif, SW Poland). 7th International Symposium on Granitic Pegmatites, Książ, Poland, June 17-19, 2015. Fieldtrip Guidebook, C, 73-103.Google Scholar
Pieczka, A., Szeleg, E., Szuszkiewicz, A., Gołebiowska, B., Zelek, S., Ilnicki, S., Nejbert, K. and Turniak, K. (2016) Cs-bearing beryl evolving to pezzottaite from the Julianna pegmatitic system, SW Poland. The Canadian Mineralogist, 54, 115124.CrossRefGoogle Scholar
Pouchou, I. L. and Pichoir, F. (1985) “PAP” (phi-rho-z) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis (J.T Armstrong, editor). San Francisco Press, San Francisco, California, USA.Google Scholar
Prior, G.T and Zambonini, F. (1908) On strüverite and its relation to ilmenorutile. Mineralogical Magazine, 15, 7889.CrossRefGoogle Scholar
Rath, S., Kunz, M. and Miletich, R. (2003) Pressure-induced phase transition in malayaite, CaSnOSiO4 . American Mineralogist, 88, 293300.CrossRefGoogle Scholar
Russell, J.K., Groat, L.A. and Halleran, A.A.D. (1994) LREE-rich niobian titanite from Mount Bisson, British Columbia: chemistry and exchange mechanisms. The Canadian Mineralogist, 32, 575587.Google Scholar
Sahama, Th.G. (1946) On the chemistry of mineral titanite. Bulletin de la Commission Géologique de Finlande, 24(138) 88120.Google Scholar
Sawka, W.N., Campbell, R.B. and Norrish, K. (1984) Light-rare-earth-element zoning in sphene and allanite during granitoid fractionation. Geology, 12, 131134.2.0.CO;2>CrossRefGoogle Scholar
Sheldrick, G.M. (2000) SHELXTL Version 6.14. Bruker Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Speer, J.A. and Gibbs, G.V. (1976) The crystal structure of synthetic titanite, CaTiOSiO4, and the domain textures of natural titanites. American Mineralogist, 61, 238247.Google Scholar
Stepanov, A.V., Bekenova, G.K., Levin, V.L. and Hawthorne, F.C. (2012) Natrotitanite, ideally (Na0 5Y0 5)Ti(SiO4)O, a new mineral from the Verkhnee Espe deposit, Akjailyautas mountains, Eastern Kazakhstan district, Kazakhstan: description and crystal structure. Mineralogical Magazaine, 76, 39–4.Google Scholar
Strunz, H. and Nickel, E.H. (2001) Strunz Mineralogical Tables, Ninth Edition. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Germany.Google Scholar
Szełeg, E., Zuzens, B., Hawthorne, EC, Pieczka, A., Szuszkiewicz, A., Turniak, K., Nejbert, K., Ilnicki, S., Friis, H., Makovicky, E., Weller, M.T. and Lemee-Cailleau, M.H. (2017) Bohseite, ideally Ca4Be4Si9O24(OH)4, from the Piława Górna quarry, the Góry Sowie Block, SW Poland. Mineralogical Magazine, 81, 3546.CrossRefGoogle Scholar
Szuszkiewicz, A., Szełeg, E., Pieczka, A., Ilnicki, S., Nejbert, K., Turniak, K., Banach, M., Lodzinski, M., Różniak, R. and Michałowski, P. (2013) The Julianna pegmatite vein system at the Piława Górna mine, Góry Sowie Block, SW Poland — preliminary data on geology and descriptive mineralogy. Geological Quarterly, 57, 467484.CrossRefGoogle Scholar
Szuszkiewicz, A., Pieczka, A., Szełeg, E., Ilnicki, S., Nejbert, K and Turniak, K (2015) Mineral chemistry of euxenite-group minerals from the Julianna pegmatites, Piława Górna, Sudetes, SW Poland. 7th International Symposium on Granitic Pegmatites, PEG 2015 Książ, Poland. Book of Abstracts, 107-108.Google Scholar
Taylor, M. and Brown, G.E. (1976) High-temperature structural study of the P2 1/a A2/a phase transition in synthetic titanite, CaTiSiO5 . American Mineralogist, 61, 435447.Google Scholar
Tiepolo, M., Oberti, R. and Vanucci, R. (2002) Trace-element incorporation in titanite: constraints from experimentally determined solid/liquid partition coefficients. Chemical Geology, 191, 105119.CrossRefGoogle Scholar
Timmermann, H., Parrish, R.R., Noble, S.R. and Kryza, R. (2000) New U-Pb monazite and zircon data from the Sudetes Mountains in SW Poland: evidence for a single-cycle Variscan orogeny. Journal of the Geological Society, London, 157, 265268.CrossRefGoogle Scholar
Turniak, K., Pieczka, A., Kennedy, A.K., Szełeg, E., Ilnicki, S., Nejbert, K and Szuszkiewicz, A. (2015) Crystallisation age of the Julianna pegmatite system (Góry Sowie Block, NE margin of the Bohemian massif): evidence from U-Th-Pb SHRIMP monazite and CHIME uraninite studies. 7th International Symposium on Granitic Pegmatites, PEG 2015 Książ,Poland. Book of Abstracts, 111-112.Google Scholar
Uher, P., Černý, P., Chapman, R., Határ, J. and Miko, O. (1998) Evolution of Nb,Ta-oxide minerals in the Prašivá granitic pegmatites, Slovakia. II. External hydrothermal Pb,Sb overprint. The Canadian Mineralogist, 36, 535545.Google Scholar
Van Breemen, O., Bowes, D.R., Aftalion, M. and Żelazniewicz, A. (1988) Devonian tectonothermal activity in the Sowie Góry gneissic block, Sudetes, southwestern Poland: evidence from Rb-Sr and U-Pb isotopic studies. Journal of the Polish Geological Society, 58, 310.Google Scholar
Woolley, A.R., Platt, R.G. and Eby, N. (1992) Niobian titanite from the Ilomba nepheline syenite complex, north Malawi. Mineralogical Magazine, 56, 428430.CrossRefGoogle Scholar
Żelazniewicz, A. (1990) Deformation and metamorphism in the Góry Sowie gneiss complex, Sudetes, SW Poland. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 179, 129157.Google Scholar
Zhang, M., Salje, E.K.H., Bismayer, U., Unruh, H.-G., Wruck, B. and Schmidt, C. (1995) Phase transition(s) in titanite CaTiSiO5: an infrared spectroscopic, dielectric response and heat capacity study. Physics and Chemistry of Minerals, 22, 4149.CrossRefGoogle Scholar