Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-13T22:56:19.365Z Has data issue: false hasContentIssue false

Temperature- and moisture-dependent powder X-ray diffraction studies of kanemite (NaSi2O4(OH)·3H2O)

Published online by Cambridge University Press:  02 January 2018

Daniela Schmidmair
Affiliation:
Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria
Volker Kahlenberg*
Affiliation:
Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria
Daniel M. Többens
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Department of Crystallography, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
Herwig Schottenberger
Affiliation:
Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Center for Chemistry and Biomedicine, Innrain 80-82, A-6020 Innsbruck
Jochem De Wit
Affiliation:
Institute of Pharmacy, Pharmaceutical Technology, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
Ulrich J. Griesser
Affiliation:
Institute of Pharmacy, Pharmaceutical Technology, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria

Abstract

The high-temperature- and moisture-dependent behaviour of synthetic kanemite (NaSi2O4(OH)·3H2O or SKS-10) has been studied by in situ powder X-ray diffraction. Heating experiments in the range between ambient temperatures and 250°C confirm earlier investigations that the dehydration of kanemite occurs in two steps. According to our results the two different reactions start at ∼30 and 75°C. The dehydration products have the following compositions: NaSi2O4(OH)·H2O (monohydrate) and NaSi2O4(OH), respectively. The crystal structures of both phases have been solved at ambient conditions ab initio from laboratory powder diffraction data using samples that have been carefully dehydrated at 60 and 150°C, respectively, and refined subsequently by the Rietveld method. Basic crystallographic data are as follows: NaSi2O4(OH)·H2O: orthorhombic, space group Pna21, a = 7.2019(1), b = 15.3252(2), c = 4.8869(1) Å, V = 539.37(1) Å3, Z = 4; NaSi2O4(OH): monoclinic, space group P21, a = 6.3873(1), b = 4.8876(1), c = 7.1936(1) Å, β = 93.36(1)°, V = 224.19(1) Å3, Z = 2. Both compounds belong to the group of single-layer silicates based on Si2O4 (OH) sheets. The sodium cations are located between the tetrahedral sheets and are surrounded by oxygen atoms from silicate anions and/or water molecules. Depending on the dehydration step the coordination numbers of the alkali ions vary between six (kanemite) and five (NaSi2O4(OH)). Kanemite and its two dehydration products show structural similarities which are discussed in detail. Moisture-dependent diffraction studies at ambient temperatures indicate that kanemite is stable between 10% and at least 90% relative humidity. Below the lower threshold a transformation to the monohydrate phase was observed. Dehydration and rehydration as a function of humidity is reversible. However, this process is combined with a significant loss of crystallinity of the samples.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alba, M.D., Chain, P. and Pavon, E. (2006) Synthesis and characterization of gallium containing kanemite. Microporous and Mesoporous Materials 94, 66-73.CrossRefGoogle Scholar
Ambrogi, V., Chiappini, I., Fardella, G., Grandoloni, G., Marmottini, F. and Perioli, L. (2001) Microporous material from kanemite for drug inclusion and release. Farmaco 56, 421-425.CrossRefGoogle ScholarPubMed
Apperley, D.C., Hudson, M.J., Keene, M.T. and Knowles, J.A. (1995) Kanemite (NaHSi2O5·3H2O) and its hydrogen-exchanged form. Journal of Materials Chemistry 5, 577-582.CrossRefGoogle Scholar
Beneke, L. and Lagaly, G. (1977) Kanemite – innercrystalline reactivity and relations to other sodium silicates. American Mineralogist 62, 763-771.Google Scholar
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192-197.CrossRefGoogle Scholar
Chen, C.-Y., Xiao, S.-Q. and Davis, M.E. (1995) Studies on ordered mesoporous materials III. Comparison of MCM-41 to mesoporous materials derived from kanemite. Microporous Materials 4, 1-20.CrossRefGoogle Scholar
Dowty, E. (2011) ATOMS 6.4. Shape Software, Kingsport, Tennessee, USA.Google Scholar
Favre-Nicolin, V. and Cerny, R. (2002) FOX, ‘free objects for crystallography’: a modular approach to ab initio structure determination from powder diffraction. Journal of Applied Crystallography 35, 734-743.CrossRefGoogle Scholar
Finger, L.W., Cox, D.E. and Jephcoat, A.P. (1994) A correction for powder diffraction peak asymmetry due to axial divergence. Journal of Applied Crystallography 27, 892-900.CrossRefGoogle Scholar
Flörke, O.W. (1955) Strukturanomalien bei Tridymit und Cristobal i t. Berichte der Deutschen Keramischen Gesellschaft 32, 369-381.Google Scholar
Garg, S., Bhaskar, T., Soni, K., Kumaran, G.M., Muto, A., Sakata, Y. and Dhar, G.M. (2008) Novel highly active FSM-16 supported molybdenum catalyst for hydrotreatment. Chemical Communications 42, 5310-5311.CrossRefGoogle Scholar
Garvie, L.A.J., Devouard, B., Groy, T.L., Cámara, F. and Buseck, P.R. (1999) Crystal structure of kanemite, NaHSi2O5·3H2O, from the Aris phonolite, Namibia. American Mineralogist 84, 1170-1175.CrossRefGoogle Scholar
Hayashi, S. (1997) Solid-state NMR study of locations and dynamics of interlayer cations and water in kanemite. Journal of Materials Chemistry 7, 1043-1048.CrossRefGoogle Scholar
Hemminger, W.F. and Cammenga, H.K. (1989) Methoden der Thermischen Analyse. Springer- Verlag, Berlin.CrossRefGoogle Scholar
Hill, R.J. and Howard, C.J. (1987) Quantitative phase analysis from neutron powder diffraction data using the Rietveld method. Journal of Applied Crystallography 20, 467-474.CrossRefGoogle Scholar
Ikeue, K., Tanaka, T., Miyoshi, N. and Machida, M. (2008) Synthesis and characterization of lanthanideincorporated FSM-16 type mesoporous silica. Solid State Sciences 10, 1584-1590.CrossRefGoogle Scholar
Inagaki, S., Fukushima, Y. and Kuroda, K. (1993) Synthesis of highly ordered mesoporous materials from a layered polysilicate. Journal of the Chemical Society, Chemical Communications, 680-682.Google Scholar
Inagaki, S., Koiwai, A., Suzuki, N., Fukushima, Y. and Kuroda, K. (1996) Syntheses of highly ordered mesoporous materials, FSM-16, derived from kanemite. Bulletin of the Chemical Society of Japan 69, 1449-1457.CrossRefGoogle Scholar
Johan, Z. and Maglione, G.F. (1972) La Kanemite, nouveau silicate de sodium hydraté de néoformation. Bulletin de la Société franc¸aise de Minéralogie et Cristallographie 95, 371-382.CrossRefGoogle Scholar
Kahlenberg, V., Dörsam, G., Wendschuh-Josties, M. and Fischer, R.X. (1999) The crystal structure of d- Na2Si2O5 . Journal of Solid State Chemistry 146, 380-386.CrossRefGoogle Scholar
Kalt, A. and Wey, R. (1968) Composés interfoliaires d’une silice hydratée cristallisée. Bulletin du Groupe Francais des Argiles 20, 205-214.CrossRefGoogle Scholar
Keene, M.T.J., Knowles, J.A. and Hudson, M.J. (1996) The reversible extraction of the hexamminecobalt (III) cation by kanemite (NaHSi2O5·3H2O): enhanced extraction in the presence of a cationic surfactant. Journal of Materials Chemistry 6, 1567-1573.CrossRefGoogle Scholar
Khomyakov, A.P. (1995) Mineralogy of Hyperagpaitic Alkaline Rocks. Oxford University Press, Oxford, UK.Google Scholar
Kirkpatrick, R.J., Kalinichev, A.G., Hou, X. and Struble, L. (2005) Experimental and molecular dynamics modeling studies of interlayer swelling: water incorporation in kanemite and ASR gel. Materials and Structures 38, 449-458.CrossRefGoogle Scholar
Kooli, F. (2002) Recrystallization of a new layered silicate from Na-Kanemite-tetramethylammonium hydroxide-water-1,4-dioxane mixture. Journal of Materials Chemistry 12, 1374-1380.CrossRefGoogle Scholar
Kuroda, K. (1996) Silica-based mesoporous molecular sieves derived from a layered polysilicate kanemite – a review. Journal of Porous Materials 3, 107-114.CrossRefGoogle Scholar
Laugier, J. and Bochu, B. (2004) LMGP Suite of Programs for the Interpretation of X-ray Experiments. ENSP/Laboratoire des Matériaux et du Génie Physique, France.Google Scholar
Liebau, F. (1985) Structural Chemistry of Silicates – Structure, Bonding and Classification. Springer- Verlag, Berlin.CrossRefGoogle Scholar
Malinovskii, Y.A. and Belov, N.V. (1979) Crystalline structure of potassium hydrogen silicate (KHSi2O5). Doklady Akademii Nauk SSSR 246, 99-103.Google Scholar
Marler, B. and Gies, H. (2012) Hydrous layer silicates as precursors for zeolites obtained through topotactic condensation: a review. European Journal of Mineralogy 24, 405-428.CrossRefGoogle Scholar
Neilson, G.F. and Weinberg, M.C. (1984) Crystallization of Na2O-SiO2 gel and glass. Journal of Non-Crystalline Solids 63, 365-374.CrossRefGoogle Scholar
Perinet, G., Tiercelin, J.J. and Barton, C.E. (1982) Présence de kanemite dans les sediments récents du lac Bogoria, Rift Gregory, Kenya. Bulletin de Minéralogie 105, 633-639.CrossRefGoogle Scholar
Piekarz, P., Derzsi, M., Jochym, P.T., Łażewski, J., Sternik, M., Parlinski, K. and Serwicka, E.M. (2009) Crystal structure, hydrogen bonding, and lattice dynamics in kanemite from first-principles calculations. Physical Review B 79, 134105.CrossRefGoogle Scholar
Rieck, H.P. (1996) Natriumschichtsilikate und Schichtkieselsa¨uren. Nachrichten aus Chemie, Technik und Laboratorium 44, 699-704.CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (2011) FullProf.2k, Version 5.00. Jan2011-ILL JRC. Institut Laue-Langevin, Grenoble, France.Google Scholar
Roisnel, T. and Rodriguez-Carvajal, J. (2000) WinPLOTR: a Windows tool for powder diffraction patterns analysis. Materials Science Forum 2000, 118-123.Google Scholar
Rubo, Z., Fengming, H. and Chongliang, D. (1985) Ertixiite – a new mineral from the Altay Pegmatite Mine, Xinjiang, China. Geochemistry 4, 192-195.Google Scholar
Sakamoto, Y., Inagaki, S., Ohsuna, T., Ohnishi, N., Fukushima, Y., Nozue, Y. and Terasaki, O. (1998) Structure analysis of mesoporous material ‘FSM-16’ studies by electron microscopy and X-ray diffraction. Microporous and Mesoporous Materials 21, 589-596.CrossRefGoogle Scholar
Sassi, M., Gramlich, V., Miéhé-Brendlé, J., Josien, L., Paillaud, J.L., Benggedach, A. and Patarin, J. (2003) Synthesis and characterization of a new onedimensional sodium silicate named Mu-29. Microporous and Mesoporous Materials 64, 51-61.CrossRefGoogle Scholar
Schmidmair, D., Kahlenberg, V., Perfler, L. and Többens, D.M. (2014) Structural, spectroscopic and computational studies on the monoclinic polymorph (form I) of potassium hydrogen disilicate (KHSi2O5). Mineralogical Magazine 78, 609-622.CrossRefGoogle Scholar
Selvam, T., Bandarapu, B., Mabande, G.T.P., Toufar, H. and Schwieger, W. (2003) Hydrothermal conversion of a layered sodium silicate, kanemite, into zeolite Beta (BEA). Microporous and Mesoporous Materials 64, 41-50.CrossRefGoogle Scholar
Shirley, R. (1999) The CRYSFIRE System for Automatic Powder Indexing. http://www.ccp14.ac.uk/tutorial/crys/index.html. Google Scholar
Stoe, (2004) WinXPOW Version 2.08. Stoe & Cie GmbH; Darmstadt, Germany.Google Scholar
Toriya, S., Takei, T., Fuji, M. and Chikazawa, M. (2003) Characterization of silica-pillared derivatives from aluminium-containing kanemite. Journal of Colloid and Interface Science 268, 435-440.CrossRefGoogle Scholar
Tozuka, Y., Sugiyama, E. and Takeuchi, H. (2010) Release profile of insulin entrapped on mesoporous materials by freeze-thaw method. International Journal of Pharmaceutics 386, 172-177.CrossRefGoogle ScholarPubMed
Vortmann, S., Rius, J., Marler, B. and Gies, H. (1999) Structure solution from powder data of the hydrous layer silicate kanemite, a precursor of the industrial ion exchanger SKS-6. European Journal of Mineralogy 11, 125-134.CrossRefGoogle Scholar
Wieker, W., Heidemann, D., Ebert, R. and Tapper, A. (1995) Zur Chemiedes Kanemits [NaHSi2O5·3H2O]x. Zeitschrift für anorganische und allgemeine Chemie 621, 1779-1784.CrossRefGoogle Scholar
Wilson, A.J.C. (editor) (1995) International Tables for Crystallography. Volume C: Mathematical, Physical and Chemical Tables. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Yamnova, N.Y., Pushcharovsky, D.Y., Andrianov, V.I., Rastsvetaeva, R.K., Khomyakov, A.P. and Mikheeva, M.G. (1989) A new type of siliconoxygen group in the crystal structure of Na[Si2O4(OH)]·H2O. Soviet Physics Doklady 34, 284-286.Google Scholar
Yanagisawa, T., Shimizu, T., Kuroda, K. and Kato, C. (1990) The preparation of alkyltrimethylammoniumkanemite complexes and their conversion to microporous materials. Bulletin of the Chemical Society of Japan 63, 988-992.CrossRefGoogle Scholar
Supplementary material: PDF

Schmidmair et al. supplementary material

Supplementary Figures and Table

Download Schmidmair et al. supplementary material(PDF)
PDF 450.8 KB