Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T05:07:55.488Z Has data issue: false hasContentIssue false

Stable coexistence of grandidierite and kornerupine during medium pressure granulite facies metamorphism

Published online by Cambridge University Press:  05 July 2018

C. J. Carson
Affiliation:
School of Earth Sciences, University of Melbourne, Parkville, Victoria, 3052, Australia
M. Hand
Affiliation:
School of Earth Sciences, University of Melbourne, Parkville, Victoria, 3052, Australia
P. H. G. M. Dirks
Affiliation:
Department of Earth Sciences, University of Utrecht, P.O. Box 80.021, 3508TA, Utrecht, The Netherlands

Abstract

Petrological and mineral chemical data are presented for two new occurrences of co-existing borosilicate minerals in the Larsemann Hills, East Antarctica. The assemblages contain kornerupine and the rare borosilicate, grandidierite (Mg,Fe)A13BSiO9. Two distinct associations occur: (1) At McCarthy Point, 1–10 mm thick tourmaline-kornerupine-grandidierite layers are hosted within quartzofeldspathic gneiss; and (2) Seal Cove, where coexisting kornerupine and grandidierite occur within coarse-grained, metamorphic segregations with Mg-rich cores of cordierite-garnet-spinel-biotite-ilmenite and variably developed plagioclase halos. The segregations are hosted within biotite-bearing, plagio-feldspathic gneiss. Textural relationships from these localities indicate the stability of co-existing kornerupine and grandidierite.

The grandidierite- and kornerupine-bearing segregations from Seal Cove largely postdate structures developed during a crustal thickening event (D2) which was coeval with peak metamorphism. At McCarthy Point, grandidierite, kornerupine and late-tourmaline growth predates, or is synchronous, with F3 fold structures developed during a extensive granulite grade, normal shearing event (D3) which occurred prior to, and synchronous with, near-isothermal decompression. Average pressure calculations on assemblages that coexist with the borosilicates at Seal Cove, indicate the prevailing conditions were 5.2–5.5 kbar at ∼ 750°C for formation of the grandidierite-kornerupine assemblage.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermand, D., Windley, B. F., and Razafiniparany, A. H. (1991) Kornerupine breakdown textures in paragneisses from southern Madagascar. Mineral. Mag., 55, 71–80.CrossRefGoogle Scholar
Black, L. P., Harley, S. L., Sun, S. S., and McCulloch, M. T. (1987) The Rayner Complex of East Antarctica: Complex isotopic systematics within a Proterozoic mobile belt. J. Metam. Geoi, 5, 1–26.CrossRefGoogle Scholar
Black, P. M. (1970) Grandidierite from Cuvier Island, New Zealand. Mineral. Mag., 37, 615–7.CrossRefGoogle Scholar
Carson, C. J., Dirks, P. H. G. M., Hand, M., Sims, J. P., and Wilson, C. J. L. (1995) Compressional and extensional tectonics in low-medium pressure granulites from the Larsemann Hills, East Antarctica. Geol. Mag. (in press).CrossRefGoogle Scholar
Clarke, G. L. and Powell, R. (1991) Proterozoic granulite facies metamorphism in the southeastern Reynolds Range, Central Australia: geological context, P—T path and overprinting relationships. J. Metam. Geol, 9, 267–81.CrossRefGoogle Scholar
de Roever, E. W. F. and Kieft, C. (1976) Grandidierite of contact-metamorphic origin from Maratakka, north west Surinam. Amer. Mineral., 61, 332–3.Google Scholar
Dirks, P. H. G. M., Carson, C. J., and Wilson, C. J. L. (1993) The deformational history of the Larsemann Hills, Prydz Bay: the importance of the Pan-African (500 Ma) in East Antarctica. Antarctic Sci., 5, 179–92.CrossRefGoogle Scholar
Edwards, R. L. and Essene, E. J. (1988) Pressure, temperature and C-O-H fluid fugacities across the amphibolite-granulite transition, Northwest Adirondack Mountains, New York. J. Petrol., 29, 39–72.CrossRefGoogle Scholar
Grew, E. S. (1982) Kornerupine and boron in high-grade metamorphic rocks. Geol. Soc. Am. Abstr. with Programs, 14, 502.Google Scholar
Grew, E. S. and Hinthorne, J. R. (1983) Boron in sillimanite. Science, 221, 547–9.CrossRefGoogle ScholarPubMed
Grew, E. S., Yates, M. G., Beryozkin, V. I. and Kitsul, V. I. (1989) Secondary grandidierite in kornerupine-sapphirine rocks of the Aldan Shield. Dokl. Akad. Nauk. SSSR, 309, 423–8 (in Russian).Google Scholar
Grew, E. S., Chernosky, J. H., Werding, G., Abraham, K., Marquez, N. and Hinthorne, J. R. (1990) Chemistry of kornerupine and associated minerals, wet chemical, ion microprobe, and X-ray study emphasizing Li, Be, B, and F contents. J. Petrol., 31, 1025–70.CrossRefGoogle Scholar
Grew, E. S., Yates, M. G., Beryozkin, V. I. and Kitsul, V. I. (1991a) Kornerupine in slyudites from the Usman River Basin on the Aldan Shield: Part I. Geology and petrography. Soviet Geol. Geophysics., 32, 66–74.Google Scholar
Grew, E. S., Yates, M. G., Beryozkin, V. I. and Kitsul, V. I. (19916) Kornerupine in slyudites from the Usman River Basin on the Aldan Shield: Part II. Chemistry of the minerals, mineral reactions. Soviet Geol. Geophysics, 32, 85–98.Google Scholar
Haslam, H. W. (1980) Grandidierite from a meta-morphic aureole near Mchinji, Malawi. Mineral. Mag., 43, 822–3.CrossRefGoogle Scholar
Helmers, H. and Lustenhouwer, W. J. (1988) Grandidierite from the Comrie aureole. Scottish J. Geol., 24, 245–8.CrossRefGoogle Scholar
Holdaway, M. J. (1971) Stability of andalusite and sillimanite and the aluminium silicate phase diagram. Amer. J. Sci., 271, 97–131.CrossRefGoogle Scholar
Holland, T. J. B. and Powell, R. (1990) An enlarged and updated internally consistent thermodynamic dataset with uncertainties and corrections: the system K2O-Na2O-CaO-MgO-MnO-FeO-Fe2O3-Al2O3-TiO2-SiO2-C-H2-O2 . J. Metam. Geol., 8, 89–124.CrossRefGoogle Scholar
Huijsmans, J. P. P., Barton, M, and van Bergen, M. J. (1982) A pegmatite containing Fe-rich grandidierite, Ti-rich dumortierite and tourmaline from the Precambrian, high grade metamorphic complex of Rogaland S.W. Norway. Neues Jahrb. Mineral. Abh., 143, 249–61.Google Scholar
Krogh, E. (1975) The first occurrence of grandidierite in Norway. Norsk. Geol. Tidsskr., 55, 77–80.Google Scholar
Lamb, W. M. and Valley, J. W. (1988) Granulite facies amphibolite and biotite equilibria, and calculated peak-metamorphic water activities. Contrib. Mineral. Petrol, 100, 349–60.CrossRefGoogle Scholar
Lonker, S. W. (1988) An occurrence of grandidierite, kornerupine and tourmaline in southeastern Ontario, Canada. Contrib. Mineral. Petrol, 98, 502–16.CrossRefGoogle Scholar
McGee, J. J., Slack, J. F. and Herrington, C. R. (1991) Boron analysis by electron microprobe using MoB4C layered synthetic crystals. Amer. Mineral, 76, 681–4.Google Scholar
Nicollet, C. (1990) Occurrences of grandidierite, serendibite and tourmaline near Ihosy, southern Madagascar. Mineral. Mag., 54, 131–3.CrossRefGoogle Scholar
Olesch, M. and Seifert, F. (1976) Synthesis, powder data and lattice constants of grandidierite, (Mg,Fe)Al3BSi09. Neues Jahrb. Mineral. Mh., 513-18.Google Scholar
Pouchou, L. and Pichoir, F. (1984) A new model for quantitative X-ray microanalysis. Reserche Aerospatiale, 3, 167–92.Google Scholar
Powell, R. and Holland, T. (1990) Calculated mineral equilibria in the pelite system, KFMASH (K2O-FeO-MgO-Al2O3-SiO2-H2O). Amer. Mineral, 75, 367–80.Google Scholar
Powell, R. and Holland, T. J. B. (1994) Optimal geothermometry and geobarometry. Amer. Mineral, 79, 120–33.Google Scholar
Ren, L., Zhao, Y., Liu, X. and Chen, T. (1992) Re-examination of the metamorphic evolution of the Larsemann Hills, East Antarctica. In Recent Progress in Antarctic Earth Science (Yoshida, Y. et al, eds.) Terra Scientific Publishing Co., Tokyo, pp. 145-53.Google Scholar
Robbins, C. R. and Yoder, H. S. Jr. (1962) Stability relations of dravite, a tourmaline. Carnegie Inst. Washington Yearbook, 61, 106–7.Google Scholar
Rosenburg, P. E. and Foit, F. F. Jr (1975) Alkali-free tourmalines in the system MgO-Al2O3-SiO2-H2O-B2O3 . Geol. Soc. Amer. Abstr. with Programs, 7, 1250–1.Google Scholar
Seifert, F. (1975) Boron-free kornerupine: A high pressure phase. Amer. J. Sci., 275, 57–87.CrossRefGoogle Scholar
Sheraton, J. W., Offe, L. A., Tingey, R. and Ellis, D. J, (1980) Enderby Land, Antarctica — An unusual Precambrian high-grade metamorphic terrain. Austral. J. Earth Sci., 27, 1–18.Google Scholar
Sheraton, J. W., Black, L. P. and McCulloch, M. T. (1984) Regional geochemical and isotopic character-istics of high-grade metamorphic of the Prydz Bay area: the extent of Proterozoic reworking of Archaean continental crust in East Antarctica. Precambrian Res., 28, 169–98.CrossRefGoogle Scholar
Sttiwe, K. and Powell, R. (1989) Low pressure granulite facies metamorphism in the Larsemann Hills area, East Antarctica; petrology and tectonic implications for the evolution of the Prydz Bay area. J. Metam. Geol, 7, 465–83.CrossRefGoogle Scholar
van Bergen, M. J. (1980) Grandidierite from aluminous metasedimentary xenoliths within acid volcanics, a first record in Italy. Mineral. Mag., 43, 651–8.CrossRefGoogle Scholar
Vrana, S. (1979) A polymetamorphic assemblage of grandidierite, kornerupine, Ti-rich dumortierite, tourmaline, sillimanite and garnet. Neues Jahrb. Mineral. Mh., 22-33.Google Scholar
Waters, D. J. and Moore, J. M. (1985) Kornerupine in Mg-Al-rich gneisses from Namaqualand, South Africa: mineralogy and evidence for late-meta-morphic fluid activity. Contrib. Mineral. Petrol, 91, 369–82.CrossRefGoogle Scholar
Werding, G. and Schreyer, W. (1978) Synthesis and crystal chemistry of kornerupine in the system MgO-Al2O3-SiO2-B2O3-H2O. Contrib. Mineral. Petrol, 67, 247–59.CrossRefGoogle Scholar
Werding, G. and Schreyer, W. (1984) Alkali-free tourmaline in the system MgO-Al2O3-B2O3-SiO2-H2O. Geochim. Cosmochim. Ada, 48, 1331–44.CrossRefGoogle Scholar
Zhao, Y., Song, B., Wang, Y., Ren, L., Li, J. and Chen, T. (1992) Geochronology of the late granite in the Larsemann Hills, East Antarctica. In Recent Progress in Antarctic Earth Science (Yoshida, Y. et al , eds.) Terra Scientific Publishing Co., Tokyo, pp. 155-61.Google Scholar