Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-29T10:55:27.969Z Has data issue: false hasContentIssue false

A reexamination of the turquoise group: the mineral aheylite, planerite (redefined), turquoise and coeruleolactite

Published online by Cambridge University Press:  05 July 2018

Eugene E. Foord
Affiliation:
M.S. 905, U.S. Geological Survey, Box 25046 Denver Federal Center, Denver, CO 80225, USA
Joseph E. Taggart Jr.
Affiliation:
M.S. 973, U.S. Geological Survey, Box 25046 Denver Federal Center, Denver, CO 80225, USA

Abstract

The turquoise group has the general formula: A0–1B6(PO4)4−x(PO3OH)x(OH)8.4H2O, where x = 0–2, and consists of six members: planerite, turquoise, faustite, aheylite, chalcosiderite and an unnamed Fe2+-Fe3+ analogue. The existence of ‘coeruleolactite’ is doubtful. Planerite is revalidated as a species and is characterized by a dominant A-site vacancy. Aheylite is established as a new member of the group, and is characterized by having Fe2+ dominant in the A-site.

Chemical analyses of 15 pure samples of microcrystalline planerite, turquoise, and aheylite show that a maximum of two of the (PO4) groups are protonated (PO3OH) in planerite. Complete solid solution exists between planerite and turquoise. Other members of the group show variable A-site vacancy as well. Most samples of ‘turquoise’ are cation-deficient or are planerite. Direct determination of water indicates that there are 4 molecules of water.

Planerite, ideally ☐Al6(PO4)2(PO3OH)2(OH)8.4H2O, is white, pale blue or pale green, and occurs as mamillary, botryoidal crusts as much as several mm thick; may also be massive; microcrystalline, crystals typically 2–4 micrometres, luster chalky to earthy, H. 5, somewhat brittle, no cleavage observed, splintery fracture, Dm 2.68(2), Dc 2.71, not magnetic, not fluorescent, mean RI about 1.60. a 7.505(2), b 9.723(3), c 7.814(2) Å, α 111.43°, β 115.56°, γ 68.69°, V 464.2(1) Å3, Z = 1.

Aheylite, ideally Fe2+Al6(PO4)4(OH)8.4H2O, is pale blue or green, and occurs as isolated and aggregate clumps of hemispherical or spherical, radiating to interlocked masses of crystals that average 3 micrometres in maximum dimension; porcelaneous-subvitreous luster, moderate to brittle tenacity, no cleavage observed, hackly to splintery fracture, not magnetic, not fluorescent, biax. (+), mean RI is about 1.63, Dm 2.84(2), Dc 2.90. a 7.400(1), b 9.896(1), c 7.627(1) Å, α 110.87°, β 115.00°, γ 69.96°, V 460.62(9) Å3, Z = 1.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barwood, H.L., and Zelazny, L.W. (1982) Phosphate minerals in the Vesuvius, Virginia, area and notes on the type locality of rockbridgeite. Rocks and Minerals, 57, 20–2.CrossRefGoogle Scholar
Belyaev, A.A. and Ievelev, A.A. (1990) Mineralogy and prospects of turquoise on Pai-Khoy. Abstracts, 15th General Meeting of the International Mineralogical Association , vol. 2, 672–3, Beijing, China.Google Scholar
Boriskin, V.P. (1974) Zinc-containing turquoise of the Bukantau region (central Kyzylkum) (in Russian). Doklady Akad. Nauk Uzbek S.S.R., 31, 42–4.Google Scholar
Boriskin, V.P. and Kuzmina, S.V. (1976) Mineralization associated with turquoise deposits in the Bukantau Region. (in Russian) Zap. Uzbek. Otdel. Vses. Mineral. Obshch., 29, 63–6.Google Scholar
Braithwaite, R.S.W. (1981) Turquoise crystals from Britain and a review of related species. Mineral. Record, 12, 349–53.Google Scholar
Cassedanne, J.P., and Sauer, D.A. (1980) Famous mineral localities: the Cruzeiro mine past and present. Mineralogical Record, 11, 363–70.Google Scholar
Čech, F., Povondra, P., and Slánskў, (1961) Über Planerit, aus Poniklá bei Jilemnice (Nordböhmen) und über die Beziehung zwischen Planer it, Coeruleolactit und Türkis. Neues Jahrb. Mineral., Abh., 96, 130.Google Scholar
Cid-Dresdner, H. (1964) The crystal structure of turquois. Die Naturwissenschaften , 51, part 16, 380–1.CrossRefGoogle Scholar
Cid-Dresdner, H. (1965) Determination and refinement of the crystal structure of turquois, CuAl6(PO4)4(OH)8.4H2O. Z. Kristallogr., 121, 87113.CrossRefGoogle Scholar
Cid-Dresdner, H., and Villarroel, H.S. (1972) Crystallographic study of rashleighite, a member of the turquoise group. Amer. Mineral., 57, 1681–91.Google Scholar
Dietrich, R. (1978) Neues zur Phosphatparagenese der Grube Rotläufchen in Waldgirmes bei Wetzlar, Teil II. Aufschluss, 29, 139–53.Google Scholar
Dietrich, R. (1982) Neues zur Phosphatparageneses der Grube Rotläufchen. Emser Hefte, Jg. 4, Nr. 3, 2247.Google Scholar
Erd, R.C. Foster, M.D. and Proctor, P.D. (1953) Faustite, a new mineral, the zinc analogue of turquoise. Amer. Mineral., 38, 964–72.Google Scholar
Fischer, Emil (1958) Über die Beziehungen zwischen Coeruleolactit, Planerit, Türkis, Alumochalkosiderit und Chalcosiderit. Beiträge zur Mineralogie und Petrographie , 6, Bd 6, 182–9.Google Scholar
Foord, E.E. and Taggart, J.E. (1986) Reassessment of the turquoise group: redefinition of planerite, (□)Al6(PO4)2(PO3OH)2(OH)8.4H2O and aheylite, FeAl6(PO4)4(OH)8.4H2O, a new member of the group. Abstracts with Program, the 14th General Meeting of the IMA, 13-18 July (1986) Stanford University, Stanford, CA, p. 102.Google Scholar
Genth, F.A.L.K.W. (1875) Preliminary report on the mineralogy of Pennsylvania. Penna. Geol. Survey, 2nd series, Rep. B (1874).Google Scholar
Giuseppetti, G., Mazzi, F. and Tadini, C. (1989) The crystal structure of chalcosiderite, CuFe6 3+(PO4)4(OH)8.4H2O. Neues Jahrb. Mineral. Mh., 227–39.Google Scholar
Guthrie, G.D. and Bish, D.L. (1991) Refinement of the turquoise structure and determination of the hydrogen positions. Geol. Soc. of America Abstracts with Programs, 23, no. 5, p. A158.Google Scholar
Hermann, R. (1862 a) Ueber Planerite, ein Neues Mineral, Untersuchungen einiger neuer Russischer Mineralien. Bull. Soc. Imp. d. natur. d. Moscou, 35, No. 3, Part 1, 240–3.Google Scholar
Hermann, R. (1862 b) Section 64, Planerit In Materialien zur Mineralogie Russlands (von Kokscharov, N.), volume 4, St. Petersburg, p. 115–7.Google Scholar
Ivanov, O.K. (1979) Zn-bearing alumochalcosiderite -first occurrence in the USSR (in Russian). Zap. Vses. Min. Obshch., 108, part. 6, 701–4.Google Scholar
Jackson, L.L., Taggart, J.E. and Foord, E.E. (1985) A quantitative determination of water in small mineral samples: Pittsburgh Conference, New Orleans, LA, 1985, Abstract, p. 1191.Google Scholar
Jackson, L.L., Brown, F.W. and Neil, S.T. (1987) Major and minor elements requiring individual determination, classical whole rock analysis, and rapid rock analysis. Chapter G: U.S. Geological Survey Bulletin, 1770, (Baedecker, P., ed.) p. G1G23.Google Scholar
Khorassani, A. and Abedini, M. (1976) A new study of turquoise from Iran. Mineral. Mag., 49, 640–2.CrossRefGoogle Scholar
Kunov, A., Velinova, M., Punev, L. and Dragostinova, V. (1982) Cuprofaustite-a new mineral for Bulgaria (in Bulgarian). Geokhimija, Mineralogija, i Petrologija, 16, 5560.Google Scholar
Kunov, A., Velinova, M. and Punev, L. (1986) Phosphate mineralization in the Spahievo Ore Field (Eastern Rhodope Mountains). From Crystal Chemistry of Minerals- Proceedings of the 13th General Meeting of the IMA, Varna, Sept. 19-25,1982. Bulgar ian Academy of Scienc es Publishing House, 877–89.Google Scholar
Lichte, F.E., Taggart, J.E. and Riddle, G.O. (1983) Analysis of minerals by inductively-coupled plasma-optical emission spectroscopy. Lab Com West, May, 1983.Google Scholar
Lichte, F.E., Golightly, D.W. and Lamothe, P.J. (1987) Inductively-coupled plasma-atomic emission spectrometry, Chapter B. U.S. Geological Survey Bulletin, 1770, (Baedecker, P., ed.) p. B1–B10.Google Scholar
Matsubara, S. and Kato, A. (1987) Phosphate minerals from Fubasami Clay Mine, Tochigi Prefecture. Abstr. Annual Meeting of the Mineral. Soc. of Japan, Tokyo, 113 (in Japanese).Google Scholar
Matsubara, S., Saito, Y. and Kato, A. (1988) Phosphate minerals in chert from Toyoda, Kochi City, Japan. J. Min. Petr. Econ. Geol., 83, 141–9.CrossRefGoogle Scholar
McConnell, D. (1942),X-ray data on several phosphate minerals. Amer. J. Sci., 240, 649–57.CrossRefGoogle Scholar
Mitchell, R.S. and Freeland, H.R. (1978) Turquoise from Virginia's Kelly Bank Mine. Rocks and Minerals, 53, 214–8.CrossRefGoogle Scholar
Mücke, A. (1981) The paragenesis of the phosphate minerals of the Hagendorf Pegmatite - A general view. Chemie der Erde, 40, 217–34.Google Scholar
Murthy, K.N. (1989) The occurrence of turquoise and faustite in Tras, Pahang. Bull. Geol. Soc. Malaysia, No. 23, 147–56.CrossRefGoogle Scholar
Nikolskaya, L.V., Lisitsyna, E.E. and Samoilovitch, M.I. (1974) Coloration of turquoise from the deposits of Central Asia (in Russian). Izvestia Akad. Nauk SSSR, Geological Series, no. 9, 105–11.Google Scholar
Petersen, T. (1871) Coeruleolactit ein neues Mineral von Rindsberg, bei Katzenellenbogen, in Nassau and Zur Kenntnis der Thonerdehydrophosphate. Neues Jahrb. Mineral., 353–9.Google Scholar
Pogue, J.E. (1915) The Turquois, a study of its history, ineralogy, geology, ethnology, archaeology, mythology, folklore, and technology. National Academy of Sciences Memoirs, 12, part 2, 207 pp.Google Scholar
Price, C. (1981) Turquoise crystals at Narooma, N.S.W. Australian Gem and Treasure Hunter, no. 59, p. 43.Google Scholar
Proctor, K. (1985) Gem pegmatites of Minas Gerais, Brazil: The tourmalines of the Governador Valadares District. Gems Gemology, Summer (1985) p. 86104.Google Scholar
Schaller, W.T. (1912) Art. V. Crystallized turquoise from Virginia. Amer. J. Sci., 33, 3540.CrossRefGoogle Scholar
Silaev, V.L., Yanulova, L.A., Kozlov, A.V. and Lyutoyev, V.P. (1995) Turquoise from the Urals-Paikhoy region. (in Russian). Proc. Russian Mineral. Soc., 124, 7186.Google Scholar
Sklavounos, S., Ericsson, T., Filippidis, A., Michailidis, K. and Kougoulis, C. (1992,)Chemical, X-ray and Mössbauer investigation of a turquoise from the Vathi area volcanic rocks, Macedonia, Greece. Neues Jahrb. Mineral. Mh., 469–80.Google Scholar
Smith, A.E., Jr. (1985) Aluminum phosphate minerals from Mauldin Mountain, Montgomery County, Arkansas. Mineralogical Record, 16, 291–5.Google Scholar
Turesebekov, A. Kh., Golovin, A.F., Balakin, V.V. and Ismailov, M.A. (1979,)Turquoise and its mineral paragenesi s in a copper-por phyry deposit of Kalmakyr (Almalyk ore field, Uzbek S.S.R.). In Russian. Zap. Uzbek. Otdel. Vses. Mineral. Obshch., 32, 64–9.Google Scholar
Van Wambeke, L. (1971) The problem of cation deficiencies in some phosphates due to alteration processes. Amer. Mineral., 56, 1366–84.Google Scholar
Yakontova, L.K., Soboleva, T.V., Plyusnina, I.I., Sergeeva, N.E. and Pozdnyakova, N.V. (1989) The Techutsk deposit - mineralogy and genesis. In Russian. Zap. Vses. Mineral. Obsch., 118, 8393.Google Scholar
Zang, H. and Lin, C. (1984) Magnetic properties, characteristic spectra and colors of turquoise. Geochemistry, 3, 322–32.Google Scholar