Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T21:22:07.670Z Has data issue: false hasContentIssue false

Nyerereite and nahcolite inclusions in diamond: evidence for lower-mantle carbonatitic magmas

Published online by Cambridge University Press:  05 July 2018

F. Kaminsky*
Affiliation:
KM Diamond Exploration Ltd., 2446 Shadoldt Lane, West Vancouver V7S3J1, British Columbia, Canada
R. Wirth
Affiliation:
Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Experimental Geochemistry and Mineral Physics, Telegrafenberg, D14473 Potsdam, Germany
S. Matsyuk
Affiliation:
Institute of Gechemistry, Mineralogy and Ore Formation, National Academy of Sciences of Ukraine, Palladin Av., 03680 Kyiv-142, Ukraine
A. Schreiber
Affiliation:
Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Experimental Geochemistry and Mineral Physics, Telegrafenberg, D14473 Potsdam, Germany
R. Thomas
Affiliation:
Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Experimental Geochemistry and Mineral Physics, Telegrafenberg, D14473 Potsdam, Germany

Abstract

Nyerereite and nahcolite have been identified as micro- and nano-inclusions in diamond from the Juina area, Brazil. Alongside them are Sr- and Ba-bearing calcite minerals from the periclase-wiistite series, wollastonite II (high), Ca-rich garnet, spinels, olivine, phlogopite and apatite. Minerals of the periclase- wustite series belong to two separate groups: wustite and Mg-wustite with Mg# = 1.9—15.3, and Fe- periclase and periclase with Mg# = 84.9—92.1. Wollastonite-II (high, with Ca:Si = 0.992) has a triclinic structure. Two types of spinel were distinguished among mineral inclusions in diamond: zoned magnesioferrite (with Mg# varying from 13.5—90.8, core to rim) and Fe spinel (magnetite). Olivine (Mg# = 93.6), intergrown with nyerereite, forms an elongate, lath-shaped crystal and most likely represents a retrograde transformation of ringwoodite or wadsleyite. All inclusions are composed of poly-mineralic solid mineral phases. Together with previously found halides, sulphates and other mineral inclusions in diamond from Juina, they form a carbonatitic-type mineral paragenesis in diamond which may have originated in the lower mantle and/or transition zone. Wustite inclusions with Mg# = 1.9—3.4, according to experimental data, may have formed in the lowermost mantle. The source for the observed carbonatitic-type mineral association in diamond is lower-mantle natrocarbonatitic magma. This magma may represent a juvenile mantle melt, or be the result of low-degree partial melting of deeply-subducted carbonated oceanic crust. This magma was rich in volatiles, such as Cl, F and H, which played an important role in the formation of diamond.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badro, J., Fiquet, G., Guyot, F., Rueff, J.-P., Struzhkin, V.V., Vanko, G. and Monaco, G. (2003) Iron partitioning in Earth's mantle; toward a deep lower mantle discontinuity. Science, 300, 789—791.CrossRefGoogle Scholar
Brenker, F.E., Vollmer, C., Vincze, L., Vekemans, B., Szymanski, A., Janssens, K., Szaloki, I., Nasdala, L. and Kaminsky, F. (2007) Carbonates from the lower part of transition zone or even the lower mantle. Earth and Planetary Science Letters, 260, 1 —9.CrossRefGoogle Scholar
Burgess, R. and Turner, G. (1995) Halogen geochemistry of mantle fluids in diamonds. Pp. 91—98 in: Volatiles in the Earth and Solar system (K.A. Farley, editor). Proceedings AIP Conference, 341.CrossRefGoogle Scholar
Church, A.A. and Jones, A.P. (1995) Silicate-carbonate immiscibility at Oldoinyo Lengai. Journal of Petrology, 36, 869—889.CrossRefGoogle Scholar
Dawson, J.B. (1962) The geology of Oldoinyo Lengai. Bulletin Volcanologique, 24, 349—387.CrossRefGoogle Scholar
Dawson, J.B. (1993) A supposed sovite from Oldoinyo Lengai, Tanzania: result of extreme alteration of alkali carbonatite lava. Mineralogical Magazine, 57, 93—101.CrossRefGoogle Scholar
Dawson, J.B., Pyle, D.M. and Pinkerton, H. (1996) Evolution of natrocarbonatite from a wollastonite nephelinite parent: evidence from the June, 1993 eruption of Oldoinyo Lengai. Journal of Geology, 104, 41—45.CrossRefGoogle Scholar
Dubrovinsky, L.S., Dubrovinskaia, N.A., Annersten, H., Halenius, E. and Harryson, H. (2001) Stability of (Mg0.5Fe0.5)O and (Mg0.8 Fe0.2)O magnesiowtistites in the lower mantle. European Journal of Mineralogy, 13, 857—861.CrossRefGoogle Scholar
Egorov, K.N., Ushchapovskaya, Z.F., Kashayev, A.A., Bogdanov, G.V. and Sizykh, Yu, I. (1988) Zemkorite, a new carbonate from kimberlites of Yakutia. Doklady Akademii Nauk SSSR, 301, 188—192.Google Scholar
Fiquet, G., Guyot, F. and Badro, J. (2008) The Earth's Lower Mantle and Core. Elements, 4, 177—182.CrossRefGoogle Scholar
Gittins, J. and Harmer, R.E. (1997) Dawson's Oldoinyo Lengai calciocarbonatite; a magmatic sovite or an extremely altered natrocarbonatite? Mineralogical Magazine, 61, 351—355.CrossRefGoogle Scholar
Gittins, J. and Jago, B.C. (1998) Differentiation of natrocarbonatite magma at Oldoinyo Lengai volcano, Tanzania. Mineralogical Magazine, 62, 759—768.CrossRefGoogle Scholar
Gittins, J. and McKie, D. (1980) Alkalic carbonatite magmas; Oldoinyo Lengai and its wider applicability. Lithos, 13, 213—215.CrossRefGoogle Scholar
Harmer, R.E. and Gittins, J. (1998) The case for primary, mantle-derived carbonatite magma. Journal of Petrology, 39, 18951903.CrossRefGoogle Scholar
Hoshino, K., Nagatomi, A., Watanabe, M., Okudaira, T. and Beppu, Y. (2006) Nahcolite in fluid inclusions from Ryoke metamorphic rocks and its implications for fluid genesis. Journal of Mineralogical and Petrological Sciences, 101, 254—259.CrossRefGoogle Scholar
Izraeli, E.S., Harris, J.W. and Navon, O. (2001) Brine inclusions in diamonds: a new upper mantle fluid. Earth and Planetary Science Letters, 187, 323—332.CrossRefGoogle Scholar
Kamenetsky, M.B., Sobolev, A.V., Kamenetsky, V.S., Maas, R., Danyushevsky, L.V., Thomas, R., Pokhilenko, N.P. and Sobolev, N.V. (2004) Kimberlite melts rich in alkali chlorides and carbonates: A potent metasomatic agent in the mantle. Geology, 32, 845—848.CrossRefGoogle Scholar
Kamenetsky, V.S., Sharygin, V.V., Kamenetsky, M.B. and Golovin, A.V. (2006) Chloride—carbonate nodules in kimberlites from the Udachnaya pipe: alternative approach to the evolution of kimberlite magmas. Geochemistry International, 44, 935940.CrossRefGoogle Scholar
Kamenetsky, V.S., Kamenetsky, M.B., Sobolev, A.V., Golovin, A.V., Demouchy, S., Faure, K., Sharygin, V.V. and Kuzmin, D.V. (2008) Olivine in the Udachnaya-East kimberlite (Yakutia, Russia): types, compositions and origins. Journal of Petrology, 49, 823839.CrossRefGoogle Scholar
Kaminsky, F.V., Zakharchenko, O.D., Davies, R., Griffin, W.L., Khachatryan-Blinova, G.K. and Shiryaev, A.A. (2001) Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contributions to Mineralogy and Petrology, 140, 734753.CrossRefGoogle Scholar
Kaminsky, F.V., Zakharchenko, O.D., Khachatryan, G.K., Griffin, W.L. and Channer, D.M. De, R. (2006) Diamond from the Los Coquitos Area, Bolivar State, Venezuela. The Canadian Mineralogist, 44, 323340.CrossRefGoogle Scholar
Kaminsky, F.V., Khachatryan, G.K., Andreazza, P., Araujo, D. and Griffin, W.L. (2009a) Super-deep diamonds from kimberlites in the Juina area, Mato Grosso State, Brazil. Lithos, 833-842.CrossRefGoogle Scholar
Kaminsky, F.V., Sablukov, S.M., Belousova, E.A., Andreazza, P., Tremblay, M. and Griffin, W.L. (2009b) Kimberlitic sources of super-deep diamonds in the Juina area, Mato Grosso State, Brazil. Lithos, DOI: 10.1016/j.lithos.2009.07.012.CrossRefGoogle Scholar
Klein-BenDavid, O., Wirth, R. and Navon, O. (2006) TEM imaging and analysis of microinclusions in diamonds: A close look at diamond-growing fluids. American Mineralogist, 91, 353365.CrossRefGoogle Scholar
Kondo, T., Ohtani, E., Hirao, N., Yagi, T. and Kikegawa, T. (2004) Phase transitions of (Mg,Fe)O at megabar pressures. Physics of the Earth and Planetary Interiors, 143-144, 201-213.CrossRefGoogle Scholar
Le Bas, M.J. (1981) Carbonatite magmas. Mineralogical Magazine, 44, 133140.CrossRefGoogle Scholar
Litasov, K.D. and Ohtani, E. (2009). Phase relations in the peridotite-carbonate-chloride system at 7.0-16.5 GPa and the role of chlorides in the origin of kimberlite and diamond. Chemical Geology, 262, 2941.CrossRefGoogle Scholar
Litvin, Y.A. (2007) High-pressure mineralogy of diamond genesis. Pp. 83-103 in: Advances in High-Pressure Mineralogy (E. Ohtani, editor). Special Paper 421, Geological Society of America, Boulder, Colorado, USA.Google Scholar
Litvin, Y.A., Litvin, V.Yu. and Kadik, A.A. (2008) Experimental characterization of diamond crystallization in melts of mantle silicate-carbonate-carbon systems at 7.0-8.5 GPa. Geochemistry International, 46, 531553.CrossRefGoogle Scholar
Logvinova, A.M., Wirth, R., Fedorova, E.N. and Sobolev, N.V. (2008) Nanometre-sized mineral and fluid inclusions in cloudy Siberian diamonds: new insights on diamond formation. European Journal of Mineralogy, 20, 317331.CrossRefGoogle Scholar
McKie, D. and Frankis, E.J. (1976) Nyerereite: A new volcanic carbonate mineral from Oldoinyo Lengai, Tanzania. Zeitschrift für Kristallographie, 145, 7395.CrossRefGoogle Scholar
Mitchell, R.H. (2006) Mineralogy of stalactites formed by subaerial weathering of natrocarbonatite hornitos at Oldoinyo Lengai, Tanzania. Mineralogical Magazine, 70, 437444.CrossRefGoogle Scholar
Mitchell, R.H. and Belton, F. (2004) Niocalite-cuspidine solid solution and manganoan monticellite from natrocarbonatite, Oldoinyo Lengai, Tanzania. Mineralogical Magazine, 68, 787799.CrossRefGoogle Scholar
Moore, R.O. and Gurney, J.J. (1989) Mineral inclusions in diamond from the Monastery kimberlite, South Africa. Pp. 1029-1041 in: Kimberlites and related rocks (J. Ross et al., editors). Geological Society of Australia Special Publication No. 14, vol. 2. Proceedings of the Fourth International Kimberlite Conference, Perth 1986, Blackwell, Carlton, Australia.Google Scholar
Munno, R., Rossi, G. and Tadini, C. (1980) Crystal chemistry of kimzeyite from Stromboli, Aeolian Islands, Italy. American Mineralogist, 65, 188191.Google Scholar
Navon, O. (1999) Diamond formation in the Earth's mantle. Pp. 584-604 in: Proceedings of the Vllth International Kimberlite Conference, vol. 2. Red Roof Design, Cape Town, RSA.Google Scholar
Navon, O., Izraeli, E.S. and Klein-BenDavid, O. (2003) Fluid inclusions in diamonds - the carbonatitic connection. 8th International Kimberlite Conference, Long Abstract FLA_0107.Google Scholar
Nickel, E.H. (1960) A zirconium-bearing garnet from Oka, Quebec. The Canadian Mineralogist, 6, 549550.Google Scholar
Pal’yanov, Yu.N., Sokol, A.G., Borzdov, Yu.M. and Khokhryakov, A.F. (2002) Fluid-bearing alkaline carbonate melts as the medium for the formation of diamonds in the Earth's mantle: an experimental study, Lithos, 60, 145159.CrossRefGoogle Scholar
Pal’yanov, Yu.N., Shatsky, V.S., Sobolev, N.V. and Sokol, A.G. (2007) The role of mantle ultrapotassic fluids in diamond formation. Proceedings of National Academy of Sciences USA, 104, 91229127.CrossRefGoogle Scholar
Parthasarathy, G., Chetty, T.R.K. and Haggerty, S.E. (2002) Thermal stability and spectroscopic studies of zemkorite; a carbonate from the Venkatampalle kimberlite of southern India. American Mineralogist, 87, 13841389.CrossRefGoogle Scholar
Peterson, T.D. (1990) Petrology of natrocarbonatite. Contributions to Mineralogy and Petrology, 105, 143155.CrossRefGoogle Scholar
Safonov, O.G., Perchuk, L.L. and Litvin, Y.A. (2007) Melting relations in the chloride-carbonate-silicate systems at high-pressure and the model for formation of alkalic diamond- forming liquids in the upper mantle. Earth and Planetary Science Letters, 253, 112—128.CrossRefGoogle Scholar
Safonov, O.G., Chertkova, N.V., Perchuk, L.L. and Litvin, Yu.A. (2009) Experimental model for alkalic chloride-rich liquids in the upper mantle. Lithos, 112(Suppl. 1), 260-273.CrossRefGoogle Scholar
Seto, Y., Hamane, D., Nagai, T. and Fujino, K. (2008) Fate of carbonates within oceanic plates subducted to the lower mantle, and a possible mechanism of diamond formation. Physics and Chemistry of Minerals, DOI 10.1007/s00269-008-0215-9, 7 pp.CrossRefGoogle Scholar
Sharygin, V.V., Kamenetsky, V.S., Kamenetsky, M.B. and Golovin, A.V. (2008) Mineralogy and genesis of kimberlite hosted chloride containing nodules from Udachnaya East pipe, Yakutia, Russia. 9th International Kimberlite Conference, Extended Abstract No. 9IKC-A-00060, 3 pp.Google Scholar
Shatskiy, A., Borzdov, Yu.M., Sokol, A.G., Katsura, T. and Pal’yanov, Yu.N. (2008) Diamond crystallization in carbonate-silicate systems: implications for natural diamond genesis. 9th International Kimberlite Conference, Extended Abstract No. 9IKC-A-00408, 3 pp.Google Scholar
Sobolev, N.V., Kaminsky, F.V., Griffin, W.L., Yefimova, E.S., Win, T.T., Ryan, C.G. and Botkunov, A.I. (1997) Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia. Lithos, 39, 135157.CrossRefGoogle Scholar
Taran, M.N., Kvasnytsya, V.M., Langer, K. and Il’chenko, K.O. (2004) Infrared spectroscopy study of nitrogen centres in microdiamonds from Ukrainian Neogenic placers. European Journal of Mineralogy, 18, 7181.CrossRefGoogle Scholar
Thomas, R., Davidson, P. and Hahn, A. (2008) Ramanite-(Cs) and ramanite-(Rb): New cesium and rubidium pentaborate tetrahydrate minerals identified with Raman spectroscopy. American Mineralogist, 93, 10341042.CrossRefGoogle Scholar
Walter, M.J., Bulanova, G.P., Armsrong, L.S., Keshav, S., Blundy, J.D., Gudfinnsson, G., Lord, O.T., Lennie, A.R., Clark, S.M., Smith, C.B. and Gobbo, L. (2008) Primary carbonatite melt from deeply subducted oceanic crust. Nature, 454, 622625.CrossRefGoogle ScholarPubMed
Waychunas, G.A. and Zhang, H. (2008) Structure, chemistry, and properties of mineral nanoparticles. Elements, 4, 381388.CrossRefGoogle Scholar
Wirth, R. (2004) Focused Ion Beam (FIB): A novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. European Journal of Mineralogy, 16, 863877.CrossRefGoogle Scholar
Wirth, R., Vollmer, C., Brenker, F., Matsyuk, S. and Kaminsky, F. (2007) Inclusions of nanocrystalline hydrous aluminium silicate ‘Phase Egg’ in superdeep diamonds from Juina (Mato Grosso State, Brazil). Earth and Planetary Science Letters, 259, 384399.CrossRefGoogle Scholar
Wirth, R., Kaminsky, F., Matsyuk, S. and Schreiber, A. (2009) Unusual micro- and nano-inclusions in diamonds from the Juina area, Brazil. Earth and Planetary Science Letters, 286, 292303.CrossRefGoogle Scholar
Woods, G.S. and Collins, A.T. (1983) Infrared absorption spectra of hydrogen complexes in Type I diamonds. Journal of Physics and Chemistry of Solids, 44, 471475.CrossRefGoogle Scholar
Zaitsev, A.N. and Chakhmouradian, A.R. (2002) Calcite-amphibole-clinopyroxene rock from the Afrikanda Complex, Kola Peninsula, Russia; mineralogy and a possible link to carbonatites; II, Oxysalt minerals. The Canadian Mineralogist, 40, 103120.CrossRefGoogle Scholar
Zaitsev, A.N., Keller, J., Spratt, J., Djefries, T.E. and Sharygin, V.V. (2008 a) Chemical composition of nyerereite and gregoryite from natrocarbonatites of Oldoinyo Lengai volcano, Tanzania. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva (Proceedings of the Russian Mineralogical Society), 137(4), 101111. (in Russian).Google Scholar
Zaitsev, A.N., Keller, J., Spratt, J., Perova, E.N. and Kearsley, A. (2008 b) Nyerereite - pirssonite - calcite - shortite relationships in altered natrocarbo- natites, Oldoinyo Lengai, Tanzania. The Canadian Mineralogist, 46, 843860.CrossRefGoogle Scholar