Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T22:51:23.341Z Has data issue: false hasContentIssue false

Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides

Published online by Cambridge University Press:  05 July 2018

S. J. Mills*
Affiliation:
Geosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia
A. G. Christy*
Affiliation:
Centre for Advanced Microscopy, Sullivans Creek Road, Australian National University, Canberra 0200, ACT, Australia
J.-M. R. Génin
Affiliation:
Institut Jean Barriol FR2843, CNRS-Université de Lorraine, ESSTIN, 2 rue Jean Lamour, F-54500 Vandoeuvre- Lés-Nancy, France
T. Kameda
Affiliation:
Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
F. Colombo
Affiliation:
Cátedra de Geología General, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Vélez Sarsfield 1611, Córdoba, Argentina
*
Vice-chair of CNMNC sub-commission on hydrotalcite group nomenclature

Abstract

Layered double hydroxide (LDH) compounds are characterized by structures in which layers with a brucite-like structure carry a net positive charge, usually due to the partial substitution of trivalent octahedrally coordinated cations for divalent cations, giving a general layer formula [(M1–x2+M3+x)(OH)2]x+. This positive charge is balanced by anions which are intercalated between the layers. Intercalated molecular water typically provides hydrogen bonding between the brucite layers. In addition to synthetic compounds, some of which have significant industrial applications, more than 40 mineral species conform to this description. Hydrotalcite, Mg6Al2(OH)16[CO3]·4H2O, as the longest-known example, is the archetype of this supergroup of minerals. We review the history, chemistry, crystal structure, polytypic variation and status of all hydrotalcite-supergroup species reported to date. The dominant divalent cations, M2+, that have been reported in hydrotalcite supergroup minerals are Mg, Ca, Mn, Fe, Ni, Cu and Zn; the dominant trivalent cations, M3+, are Al, Mn, Fe, Co and Ni. The most common intercalated anions are (CO3)2–, (SO4)2– and Cl; and OH, S2– and [Sb(OH)6]– have also been reported. Some species contain intercalated cationic or neutral complexes such as [Na(H2O)6]+ or [MgSO4]0. We define eight groups within the supergroup on the basis of a combination of criteria. These are (1) the hydrotalcite group, with M2+:M3+ = 3:1 (layer spacing ∼7.8 Å); (2) the quintinite group, with M2+:M3+ = 2:1 (layer spacing ∼7.8 Å); (3) the fougèrite group, with M2+ = Fe2+, M3+ = Fe3+ in a range of ratios, and with O2– replacing OH– in the brucite module to maintain charge balance (layer spacing ∼7.8 Å); (4) the woodwardite group, with variable M2+:M3+ and interlayer [SO4]2 –, leading to an expanded layer spacing of ∼8.9 Å; (5) the cualstibite group, with interlayer [Sb(OH)6]– and a layer spacing of ∼9.7 Å; (6) the glaucocerinite group, with interlayer [SO4]2– as in the woodwardite group, and with additional interlayer H2O molecules that further expand the layer spacing to ∼11 Å; (7) the wermlandite group, with a layer spacing of ∼11 Å, in which cationic complexes occur with anions between the brucite-like layers; and (8) the hydrocalumite group, with M2+ = Ca2+ and M3+ = Al, which contains brucite-like layers in which the Ca:Al ratio is 2:1 and the large cation, Ca2+, is coordinated to a seventh ligand of 'interlayer' water.

The principal mineral status changes are as follows. (1) The names manasseite, sjögrenite and barbertonite are discredited; these minerals are the 2H polytypes of hydrotalcite, pyroaurite and stichtite, respectively. Cyanophyllite is discredited as it is the 1M polytype of cualstibite. (2) The mineral formerly described as fougèrite has been found to be an intimate intergrowth of two phases with distinct Fe2+:Fe3+ ratios. The phase with Fe2+:Fe3+ = 2:1 retains the name fougèrite; that with Fe2+:Fe3+ = 1:2 is defined as the new species trébeurdenite. (3) The new minerals omsite (IMA2012-025), Ni2Fe3+(OH)6[Sb(OH)6], and mössbauerite (IMA2012-049), Fe3+6O4(OH)8[CO3]·3H2O, which are both in the hydrotalcite supergroup are included in the discussion. (4) Jamborite, carrboydite, zincaluminite, motukoreaite, natroglaucocerinite, brugnatellite and muskoxite are identified as questionable species which need further investigation in order to verify their structure and composition. (5) The ranges of compositions currently ascribed to motukoreaite and muskoxite may each represent more than one species. The same applies to the approved species hydrowoodwardite and hydrocalumite. (6) Several unnamed minerals have been reported which are likely to represent additional species within the supergroup.

This report has been approved by the Commission on New Minerals, Nomenclature and Classification (CNMNC) of the International Mineralogical Association, voting proposal 12-B.

We also propose a compact notation for identifying synthetic LDH phases, for use by chemists as a preferred alternative to the current widespread misuse of mineral names.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aïssa, R., François, M., Ruby, C., Fauth, F., Medjahdi, G., Abdelmoula, M. and Génin, J.-M. R. (2006) Formation and crystallographical structure of hydroxysulphate and hydroxycarbonate green rusts synthesized by coprecipitation. Journal of Physical Chemistry of Solids, 67, 10161019.CrossRefGoogle Scholar
Alker, A., Colob, P., Postl, W. and Waltinger, H. (1981) Hydrotalkit, Nordstrandit und Motukoreait vom Stradner Kogel, südlich Gleichenberg, Steiermark. Mitteilungen der Abteilung für Mineralogie des Landesmuseum Joanneum, 49, 113.Google Scholar
Allmann, R. (1968) The crystal structure of pyroaurite. Acta Crystallographica, B24, 972979.CrossRefGoogle Scholar
Allmann, R. and Donnay, J.D.H. (1969) About the structure of iowaite. American Mineralogist, 54, 296299.Google Scholar
Allmann, R. and Jepsen, H.P. (1969) Die struktur des hydrotalkits. Neues Jahrbuch für Mineralogie Monatshefte, 1969, 544551.Google Scholar
Aminoff, G. and Broomé, B. (1931) Contributions to the mineralogy of Långban. III. Contributions to the knowledge of the mineral pyroaurite. Kungliga Svenska vetenskapsakademiens handlingar, 9, 2348.Google Scholar
Amphlett, C.B. (1958) Ion exchange in clay minerals. Endeavour, 17, 149155.CrossRefGoogle Scholar
Arakcheeva, A.V., Pushcharovskiy, D.Y.., Rastsvetaeva, R.K., Atencio, D. and Lubman, D.U. (1996) Crystal structure and comparative crystal chemistry of Al2Mg4(OH)12(CO3)·3H2O, a new mineral from the hydrotalcite-manasseite group. Crystallography Reports, 41, 972981.Google Scholar
Arden, T.V. (1950) The solubility products of ferrous and ferrosic hydroxides. Journal of the Chemical Society, 1950, 882885.CrossRefGoogle Scholar
Artini, E. (1909) Brugnatellite; nuova specie minerale trovata in Val Malenco. Rendiconti della Regia Accademia Nazionale dei Lincei, 18, 36.Google Scholar
Barrer, R.M. (1978) Cation-exchange equilibria in zeolites and feldspathoids. Pp. 385–395 in: Natural Zeolites: Occurrence, Properties, Use (L.B. Sand and F.A. Mumpton, editors). Pergamon Press, New York.Google Scholar
Benali, O., Abdelmoula, M., Refait, Ph. and Génin, J.- M.R. (2001) Effect of orthophosphate on the oxidation products of Fe(II)-Fe(III) hydroxycarbonate: the transformation of green rust to ferrihydrite. Geochimica et Cosmochimica Acta, 65, 17151726.CrossRefGoogle Scholar
Bernal, J.D., Dasgupta, D.R. and Mackay, A.L. (1959) The oxides and hydroxides of iron and their structural inter-relationships. Clay Minerals Bulletin, 4, 1530.CrossRefGoogle Scholar
Bertrand, E. and Damour, A. (1881) Zinc-aluminite, nouvelle espéce minérale du Laurium. Bulletin de la Société Française de Minéralogie, 4, 135136.CrossRefGoogle Scholar
Bish, D.L. (1980) Anion-exchange in takovite: applications to other hydroxide minerals. Bulletin de Minéralogie, 103, 170175.CrossRefGoogle Scholar
Bish, D.L. and Brindley, G.W. (1977) Reinvestigation of takovite, a nickel aluminum hydroxy-carbonate of the pyroaurite group. American Mineralogist, 62, 458464.Google Scholar
Bish, D.L. and Livingstone, A. (1981) The crystal chemistry and paragenesis of honessite and hydrohonessite. Mineralogical Magazine, 44, 339343.CrossRefGoogle Scholar
Bonaccorsi, E., Merlino, S. and Orlandi, P. (2007) Zincalstibite, a new mineral, and cualstibite: crystal chemical and structural relationships. American Mineralogist, 92, 198203.Google Scholar
Bookin, A.S. and Drits, V.A. (1993) Polytype diversity of the hydrotalcite-like minerals. I. Possible polytypes and their diffraction features. Clays and Clay Minerals, 41, 551557.CrossRefGoogle Scholar
Bookin, A.S., Cherkashin, V.I. and Drits, V.A. (1993a) Polytype diversity of the hydrotalcite-like minerals. II. Determination of the polytypes of experimentally studied varieties. Clays and Clay Minerals, 41, 558564.CrossRefGoogle Scholar
Bookin, A.S., Cherkashin, V.I. and Drits, V.A. (1993b) Reinterpretation of the X-ray diffraction patterns of stichtite and reevesite. Clays and Clay Minerals, 41, 631634.CrossRefGoogle Scholar
Braithwaite, R.S.W., Dunn, P.J., Pritchard, R.G. and Paar, W.H. (1994) Iowaite, a re-investigation. Mineralogical Magazine, 58, 7985.CrossRefGoogle Scholar
Brindley, G.W. (1979) Motukoreaite - additional data and comparison with related minerals. Mineralogical Magazine, 43, 337340.CrossRefGoogle Scholar
Britvin, S.N., Chukanov, N.V., Bekenova, G.K., Tagovkina, M.A., Antonov, A.V., Bogdanova, A.N. and Krasnova, N.I. (2008) Karchevskyite, [Mg18Al9(OH)54][Sr2(CO3,PO4)9(H2O,H3O)11], a new mineral species of the layered double hydroxide family. Geology of Ore Deposits, 50, 556564.CrossRefGoogle Scholar
Bryner, V., Rodgers, K.A., Courtney, S.F. and Postl, L. (1991) Motukoreaite from Brown Island, New Zealand, and Stradnerkö gel, Austria - a scanning electron microscopic study. Neues Jahrbuch für Mineralogie Abhandlung, 163, 291304.Google Scholar
Carroll, D. (1959) Ion exchange in clays and other minerals. Geological Society of America Bulletin, 70, 749779.CrossRefGoogle Scholar
Chao, G.Y. and Gault, R.A. (1997) Quintinite-2H, quintinite-3T, charmarite-2H, charmarite-3T and caresite-3T, a new group of carbonate minerals related to the hydrotalcite/manasseite group. The Canadian Mineralogist, 35, 15411549.Google Scholar
Christiansen, B.C., Balic-Zunic, T., Dideriksen, K. and Stipp, S.L.S. (2009) Identification of green rust in groundwater. Environmental Science and Technology, 43, 34363441.CrossRefGoogle ScholarPubMed
Chukanov, N.V., Pekov, I.V., Levitskaya, L.A. and Zadov, A.E. (2009) Droninoite, Ni3Fe3+Cl (OH)8·2H2O, a new hydrotalcite-group mineral species from the weathered Dronino meteorite. Geology of Ore Deposits, 51, 767773.CrossRefGoogle Scholar
Cooper, M.A. and Hawthorne, F.C. (1996) The crystal structure of shigaite, [AlMn2(OH)6]3(SO4)2 Na(H2O)6{H2O}6, a hydrotalcite-group mineral. The Canadian Mineralogist, 34, 9197.Google Scholar
Dana, E.S. (1892) The System of Mineralogy, sixth edition. Wiley, New York, 962 pp.Google Scholar
De Waal, S.A. and Viljoen, E.A. (1971) Nickel minerals from Barberton, South Africa: IV. Reevesite, a member of the hydrotalcite group. American Mineralogist, 56, 10771081.Google Scholar
Dittler, E. and Koechlin, R. (1932) Ü ber Glaukokerinit, ein neues Mineral von Laurion. Centralblatt für Mineralogie, Geologie und Paläontologie, A, 1317.Google Scholar
Dornberger-Schiff, K. (1982) Geometrical properties of MDO polytypes and procedures for their derivation. I. General concept and applications to polytype families consisting of OD layers all of the same kind. Acta Crystallographica, A38, 438491.Google Scholar
Drissi, S.H., Refait, Ph., Abdelmoula, M. and Génin, J.- M.R. (1995) The preparation and thermodynamic properties of Fe(II)-Fe(III) hydroxycarbonate (green rust 1); Pourbaix diagram of iron in carbonatecontaining aqueous media. Corrosion Science, 37, 20252041.CrossRefGoogle Scholar
Drits, V.A., Sokolova, T.N., Sokolova, G.V. and Cherkashin, V.I. (1987) New members of the hydrotalcite-manasseite group. Clays and Clay Minerals, 35, 401417.CrossRefGoogle Scholar
Duan, X. and Evans, G.D. (2006) Layered Double Hydroxides. Springer, Berlin, 218 pp.CrossRefGoogle Scholar
Dunn, P.J., Peacor, D.R. and Palmer, T.D. (1979) Desautelsite, a new mineral of the pyroaurite group. American Mineralogist, 64, 127130.Google Scholar
Evans, D.G. and Slade, R.C.T. (2006) Structural aspects of layered double hydroxides. Pp. 187 in: Layered Double Hydroxides (X. Duan and D.G. Evans, editors). Structure and Bonding, 119. Springer, Berlin, 218 pp.Google Scholar
Féder, F., Trolard, F., Klingelhö fer, G. and Bourrié, G. (2005) In situ Mössbauer spectroscopy evidence for green rust (fougerite) in a gleysol and its mineralogical transformations with time and depth. Geochimica et Cosmochimica Acta, 69, 44634483.CrossRefGoogle Scholar
Feoktistov, G.D., Ivanov, S.I., Kashaev, A.A., Klyuchanskii, L.N., Taskina, N.G. and Ushchapovskaya, Z.F. (1978) The occurrence of chlormanasseite [= chlormagaluminite] in the USSR. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 107, 321325.[in Russian].Google Scholar
Fenoglio, M. (1938) Ricerche sulla brugnatellite. Periodico di Mineralogia, 9, 113.Google Scholar
Ferraris, G. and Merlino, S. (editors) (2005) Micro- and Mesoporous Mineral Phases. Reviews in Mineralogy and Geochemistry, 57. Mineralogical Society of America, Washington DC and the Geochemical Society, St Louis, Missouri, USA. 448 pp.CrossRefGoogle Scholar
Ferraris, G., Makovicky, E. and Merlino, S. (2004) Crystallography of Modular Materials. IUCr Monographs on Crystallography, 15. Oxford University Press, Oxford, UK. 370 pp.Google Scholar
Fischer, R., Kuzel, H.-J. and Schellhorn, H. (1980) Hydrocalumit: Mischkristalle von ‘‘Friedelschem Salz’’ 3CaO·Al2O3·CaCl2·10H2O und tetracalciumaluminathydrat 3CaO·Al2O3·Ca(OH)2·12H2O. Neues Jahrbuch für Mineralogie Monatshefte, 1980, 322334.Google Scholar
Flink, G. (1901) Mineralogische Notizen. Bulletin of the Geological Institutions of the University of Uppsala, 5, 8195.Google Scholar
Foshag, W.F. (1920) The chemical composition of hydrotalcite and the hydrotalcite minerals. Proceedings of the United States National Museum, 58, 147153.CrossRefGoogle Scholar
Frondel, C. (1941) Constitution and polymorphism of the pyroaurite and sjögrenite groups. American Mineralogist, 26, 295316.Google Scholar
Génin, J.-M.R. and Ruby, C. (2008) Structure of some FeII-III hydroxysalt green rusts (carbonate, oxalate, methanoate) from Mö ssbauer spectroscopy. Hyperfine Interactions, 185, 191196.CrossRefGoogle Scholar
Génin, J.-M.R., Bauer, Ph., Olowe, A.A. and Rézel, D. (1986) Mössbauer study of the kinetics of simulated corrosion process of iron in chlorinated aqueous solution around room temperature: the hyperfine structure of ferrous hydroxides and green rust I. Hyperfine Interactions, 29, 13551360.CrossRefGoogle Scholar
Génin, J.-M.R., Olowe, A.A., Refait, Ph. and Simon, L. (1996) On the stoichiometry and Pourbaix diagram of Fe(II)-Fe(III) hydroxysulphate or sulphatecontaining green rust 2: An electrochemical and Mössbauer spectroscopy study. Corrosion Science, 38, 17511762.CrossRefGoogle Scholar
Génin, J.-M.R., Bourrié, G., Trolard, F., Abdelmoula, M., Jaffrezic, A., Refait, Ph., Maître, V., Humbert, B. and Herbillon, A.J. (1998) Thermodynamic equilibria in aqueous suspensions of synthetic and natural FeII-FeIII green rusts: occurrences of the mineral in hydromorphic soils. Environmental Science and Technology, 32, 10581068.CrossRefGoogle Scholar
Génin, J.-M.R., Refait, Ph. and Abdelmoula, M. (2002) Green rusts and their relationship to iron corrosion; a key role in microbially influenced corrosion. Hyperfine Interactions, 139/140, 119131.CrossRefGoogle Scholar
Génin, J.-M.R., Aïssa, R.hin, A., Abdelmoula, M., Benali, O., Ernstsen, V., Ona-Nguema, G., Upadhyay, C. and Ruby, C. (2005) Fougérite and FeII-III hydroxycarbonate green rust; ordering, deprotonation and/or cation substitution; structure of hydrotalcite-like compounds and mythic ferrosic hydroxide Fe(OH)(2+x). Solid State Science, 7, 545572.CrossRefGoogle Scholar
Génin, J.-M.R., Abdelmoula, M., Ruby, C. and Upadhyay, C. (2006a) Speciation of iron; characterisation and structure of green rusts and FeII-III hydroxycarbonate fougerite. Comptes Rendus Geosciences, 338, 402419.CrossRefGoogle Scholar
Génin, J.-M.R., Ruby, C., Géhin, A. and Refait, Ph. (2006b) Synthesis of green rusts by oxidation of Fe(OH)2, their products of oxidation and reduction of ferric oxyhydroxides; Eh-pH Pourbaix diagrams. Comptes Rendus Geosciences, 338, 433446.CrossRefGoogle Scholar
Génin, J.-M.R., Ruby, C. and Upadhyay, C. (2006c) Structure and thermodynamics of ferrous, stoichiometric and ferric oxyhydroxycarbonate green rusts; redox flexibility and fougerite mineral. Solid State Science, 8, 13301343.CrossRefGoogle Scholar
Génin, J.-M.R., Renard, A. and Ruby, C. (2008) Fougérite FeII-III oxyhydroxycarbonate in environmental chemistry and nitrate reduction. Hyperfine Interactions, 186, 3137.CrossRefGoogle Scholar
Génin, J.-M.R., Guérin, O., Herbillon, A.J., Kuzman, E., Mills, S.J., Morin, G., Ona-Nguema, G., Ruby, C. and Upadhyay, C. (2012a) Redox topotactic reactions in FeII-III (oxy)-hydroxycarbonate new minerals related to fougerite in gleysols; ‘‘trébeurdenite’’ and ‘‘mössbauerite’’. Hyperfine Interactions, 204, 7181.CrossRefGoogle Scholar
Génin, J.-M.R., Mills, S.J., Christy, A.G., Guérin, O., Herbillon, A.J., Kuzman, E., Morin, G., Ona- Nguema, G., Ruby, C. and Upadhyay, C. (2012b) Mössbauerite, Fe3+ 6 O4(OH)8CO3·3H2O, the first fully oxidized ‘green rust’ mineral from Mont Saint- Michel Bay, France. Mineralogical Magazine, 76, (in press).Google Scholar
Girard, A. and Chaudron, G. (1935) Sur la constitution de la rouille. Comptes Rendus Académie des Sciences, Paris, 200, 127129.Google Scholar
Goh, K.-H., Lim, T.-T. and Dong, Z. (2008) Application of layered double hydroxides for removal of oxyanions: a review. Water Research, 42, 13431368.CrossRefGoogle ScholarPubMed
Grguric, B.A., Madsen, I.C. and Pring, A. (2001) Woodallite, a new chromium analogue of iowaite from the Mount Keith nickel deposit, Western Australia. Mineralogical Magazine, 65, 427435.CrossRefGoogle Scholar
Guinier, A., Bokij, G.B., Boll-Dornberger, K., Cowley, J.M., Durovič, S., Jagodzinski, H., Krishna, P., de Wolff, P.M., Zvyagin, B.B., Cox, D.E., Goodman, P., Hahn, Th., Kuchitsu, K. and Abrahams, S.C. (1984) Report of the International union of Crystallography ad hoc committee on the nomenclature of disordered, modulated and polytypic structures. Acta Crystallographica, A40, 399404.CrossRefGoogle Scholar
Hager, S.L., Leverett, P. and Williams, P.A. (2009) Possible structural and chemical relationships in the cyanotrichite group. The Canadian Mineralogist, 47, 635648.CrossRefGoogle Scholar
Hansen, H.C.B. and Taylor, R.M. (1991) Formation of synthetic analogues of double metal-hydroxy carbonate minerals under controlled pH conditions. II. The synthesis of desautelsite. Clay Minerals, 26, 507525.CrossRefGoogle Scholar
Hatert, F. and Burke, E.A.J. (2008) The IMA-CNMNC dominant-constituent rule revisited and extended. The Canadian Mineralogist, 46, 717728.CrossRefGoogle Scholar
Hawthorne, F.C., Kimata, M. and Eby, R.K. (1993) The crystal structure of spangolite, a complex copper sulfate sheet mineral. American Mineralogist, 78, 649652.Google Scholar
Heddle, M.F. (1879) Geognosy and mineralogy of Scotland. Mineralogical Magazine, 2, 106133.CrossRefGoogle Scholar
Henderson, D.M. and Gutowsky, H.S. (1962) A nuclear magnetic resonance determination of the hydrogen positions in Ca(OH)2. American Mineralogist, 47, 12311251.Google Scholar
Herbillon, A.J. (2006) Ferrosic hydroxides, green rusts and fougerite in the biogeochemical cycle of iron. Comptes Rendus Geosciences, 338, 393401.CrossRefGoogle Scholar
Heyl, A.V., Milton, C. and Axelrod, J.M. (1959) Nickel minerals from near Linden, Iowa County, Wisconsin. American Mineralogist, 44, 9951009.Google Scholar
Hill, R.J. (1980) The crystal structure of mooreite. Acta Crystallographica, B36, 13041311.CrossRefGoogle Scholar
Hochstetter, C. (1842) Untersuchung ü ber die Zusammensetzung einiger Mineralien. Journal für Praktische Chemie, 27, 375378.CrossRefGoogle Scholar
Hudson, D.R. and Bussel, M. (1981) Mountkeithite, a new pyroaurite-related mineral with an interlayer containing exchangeable MgSO4. Mineralogical Magazine, 44, 345350.CrossRefGoogle Scholar
Huminicki, D.M.C. and Hawthorne, F.C. (2003) The crystal structure of nikischerite, NaFeAl3(SO4)2 (OH)18(H2O)12, a mineral of the shigaite group. The Canadian Mineralogist, 41, 7982.CrossRefGoogle Scholar
Huminicki, D.M.C., Hawthorne, F.C., Grice, J.D., Roberts, A.C. and Jambor, J.L. (2003) Nikischerite, a new mineral from the Huanuni tin mine, Dalence Province, Oruro Department, Bolivia. Mineralogical Record, 34, 155158.Google Scholar
Igelström, L.J. (1865) Nya och sällsynta mineralier från Vermlands och O¨ rebro län. Ö fversigt af Kongliga Vetenskaps-Akademiens Fö rhandlingar, 16, 399400.Google Scholar
Ingram, L. and Taylor, H.F.W. (1967) The crystal structures of sjö grenite and pyroaurite. Mineralogical Magazine, 36, 465479.CrossRefGoogle Scholar
Jambor, J.L. (1969a) Coalingite from the Muskox Intrusion, Northwest Territories. American Mineralogist, 54, 437447.Google Scholar
Jambor, J.L. (1969b) Muskoxite, a new hydrous magnesium-ferric iron hydroxide from the Muskox Intrusion, Northwest Territories, Canada. American Mineralogist, 54, 684696.Google Scholar
Jambor, J.L. and Boyle, R.W. (1964) A nickel hydroxide mineral from Rock Creek, British Columbia. The Canadian Mineralogist, 8, 116120.Google Scholar
Kameda, T. and Yoshioka, T. (2011) Hybrid inorganic/ organic composites of layered double hydroxides intercalated with organic acid anions for the uptake of hazardous substances from aqueous solution. Pp. 123148 in: Metal, ceramic and polymeric composites for various uses (J. Cuppoletti, editor). Intech, Croatia.Google Scholar
Kameda, T., Yoshioka, T., Mitsuhashi, T., Uchida, M. and Okuwaki, A. (2003) The simultaneous removal of calcium and chloride ions from calcium chloride solution using magnesium-aluminum oxide. Water Research, 37, 40454050.CrossRefGoogle ScholarPubMed
Kameda, T., Fubasami, Y. and Yoshioka, T. (2011a) Kinetics and equilibrium studies on the treatment of nitric acid with Mg-Al oxide obtained by thermal decomposition of NO3 --intercalated Mg-Al layered double hydroxide. Journal of Colloid and Interface Science, 362, 497502.Google Scholar
Kameda, T., Uchiyama, N. and Yoshioka, T. (2011b) Removal of HCl, SO2, and NO by treatment of acid gas with Mg-Al oxide slurry. Chemosphere, 82, 587591.CrossRefGoogle Scholar
Kashaev, A.A., Feoktistov, G.D. and Petrova, S.V. (1982) Chlormagaluminite, (Mg,Fe2+)4Al2(OH)12 (Cl,-CO3)2·2H2O - a new mineral of the manasseite -sjö grenite group. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 111, 121127.[in Russian].Google Scholar
Kohls, D.W. and Rodda, J.L. (1967) Iowaite, a new hydrous magnesium hydroxide-ferric oxychloride from the Precambrian of Iowa. American Mineralogist, 52, 12611271.Google Scholar
Kolitsch, U. and Giester, G. (2007) A preliminary determination of the crystal structure of cyanophyllite and revision of its chemical formula. Mitteilungen der Ö sterreichischen Mineralogischen Gesellschaft, 153, 66, [abstract].Google Scholar
Kolitsch, U., Giester, G. and Pippinger, T. (in press) The crystal structure of cualstibite-1M (formerly cyanophyllite), its revised chemical formula and its relation to cualstibite-1T. Mineralogy and Petrology.Google Scholar
Koritnig, S. and Sü sse, P. (1975) Meixnerit, Mg6Al2(OH)18·4H2O, ein neues Magnesium- Aluminium-Hydroxid-Mineral. Tschermaks Mineralogische und Petrographische Mitteilungen, 22, 7987.CrossRefGoogle Scholar
Krivovichev, S.V., Yakovenchuk, V.N., Zhitova, E.S., Zolotarev, A.A., Pakhomovsky, Y.A. and Ivanyuk, G.Y.. (2010a) Crystal chemistry of natural layered double hydroxides. 1. Quintinite-2H-3c from the Kovdor alkaline massif, Kola peninsula, Russia. Mineralogical Magazine, 74, 821832.Google Scholar
Krivovichev, S.V., Yakovenchuk, V.N., Zhitova, E.S., Zolotarev, A.A., Pakhomovsky, Y.A. and Ivanyuk, G.Y.. (2010b) Crystal chemistry of natural layered double hydroxides. 2. Quintinite-1M. First evidence of a monoclinic polytype in M2+-M3+ layered double hydroxides. Mineralogical Magazine, 74, 833840.CrossRefGoogle Scholar
Krivovichev, S.V., Yakovenchuk, V.N., Zhitova, E.S., Zolotarev, A.A., Pakhomovsky, Y.A. and Ivanyuk, G.Y.. (2010c) Crystal chemistry of natural layered double hydroxides. 3. The crystal structure of Mg,Al-disordered quintinite-2H. Mineralogical Magazine, 74, 841848.Google Scholar
Lapham, D.M. (1965) A new nickeliferous magnesium hydroxide from Lancaster County, Pennsylvania. American Mineralogist, 50, 17081716.Google Scholar
Lisitsina, N.A., Drits, V.A., Sokolova, G.V. and Aleksandrova, V.A. (1985) New complex secondary minerals - products of low temperature alteration of sedimentary rocks. Litologia i Poleznie Iskopaemie, 1985, 2038, [in Russian].Google Scholar
Loewenstein, W. (1954) The distribution of aluminum in the tetrahedra of silicates and aluminates. American Mineralogist, 39, 9296.Google Scholar
Lozano, R.P., Rossi, C., La Iglesia, A. and Matesanz, E. (2012) Zaccagnaite-3R, a new Zn-Al hydrotalcite polytype from El Soplao cave (Cantabria, Spain). American Mineralogist, 97, 513523.Google Scholar
Maksimović, Z. (1957) Takovite, hydrous nickel aluminate, a new mineral. Zapisnici Srpskog geološkog društva, 1955, 219224.Google Scholar
Maksimović, Z. (1958) An essay on the synthesis of nickel hydroaluminate and nickel hydrosilicate under normal conditions. Bulletin of the Scientific Council of the Academy of Sciences of Yugoslavia, 4, 50 pp.Google Scholar
Maksimović, Z. (1959) The use of spectrochemical analysis for estimation of exchangable cations in clay minerals. Bulletin Classe des Sciences Mathematiques et Natturalles, 7, 163165.Google Scholar
Manasse, E. (1915) Rocce eritree e di Aden della collezione Issel. Atti della Societá Toscana di Scienze Naturali, Processi Verbali, 24, 92.Google Scholar
Matsubara, S., Kato, A. and Nagashima, K. (1984) Desautelsite from Konomori, Kochi City, Japan. Bulletin of the National Science Museum, 10, 8186.Google Scholar
Menezes, L.A.D. and Martins, J.M. (1984) The Jacupiranga mine, Sa˜o Paulo, Brazil. Mineralogical Record, 15, 261270.Google Scholar
Merlino, S. and Orlandi, P. (2001) Carraraite and zaccagnaite, two new minerals from the Carrara marble quarries: their chemical compositions, physical properties and structural features. American Mineralogist, 86, 12931301.Google Scholar
Meyn, M., Beneke, K. and Lagaly, G. (1990) Anionexchange reactions of layered double hydroxides. Inorganic Chemistry, 29, 52015207.CrossRefGoogle Scholar
Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21, 10731080.CrossRefGoogle Scholar
Mills, S.J., Whitfield, P.S., Wilson, S.A., Woodhouse, J.N., Dipple, G.M., Raudsepp, M. and Francis, C.A. (2011) The crystal structure of stichtite, re-examination of barbertonite and the nature of polytypism in MgCr hydrotalcites. American Mineralogist, 96, 179187.Google Scholar
Mills, S.J., Christy, A.G., Kampf, A.R., Housley, R.M., Favreau, G., Boulliard, J.-C. and Bourgoin, V. (2012a) Zincalstibite-9R: the first 9-layer polytype with the layered double hydroxide structure-type. Mineralogical Magazine, 76, 13371345.CrossRefGoogle Scholar
Mills, S.J., Kampf, A.R., Housely, R.M., Favreau, G., Pasero, M., Biagioni, C., Merlino, S., Berbain, C. and Orlandi, P. (2012b) Omsite, (Ni,Cu)2Fe3+ (OH)6[Sb(OH)6], a new member of the cualstibite group from Oms, France. Mineralogical Magazine, 76, 13471354.CrossRefGoogle Scholar
Mills, S.J., Whitfield, P.S., Kampf, A.R., Wilson, S.A., Dipple, G.M., Raudsepp, M. and Favreau, G. (2012c) Contribution to the crystallography of hydrotalcites: the crystal structure of woodallite and takovite. Journal of Geosciences, (in press).Google Scholar
Miyata, S. (1975) Synthesis of hydrotalcite-like compounds and their structures and physicochemical properties. I. The systems Mg2+-Al3+-NO3 -, Mg2 + -A l 3 + -C l -, Mg2 + -A l 3 + -C l O 4 -, Ni2+-Al3+-Cl- and Zn2+-Al3+-Cl-. Clays and Clay Minerals, 23, 369375.CrossRefGoogle Scholar
Miyata, S. and Okada, A. (1977) Synthesis of hydrotalcite-like compounds and their physicoc h e m i c a l p r o p e r t i e s - t h e s y s t e m s Mg2+-Al3+-SO42- and Mg2+-Al3+-CrO42-. Clays and Clay Minerals, 25, 1418.CrossRefGoogle Scholar
Moore, P.B. (1971) Wermlandite, a new mineral from Långban, Sweden. Lithos, 4, 213217.CrossRefGoogle Scholar
Morandi, N. and Dalrio, G. (1973) Jamborite: a new nickel hydroxide mineral from the northern Appenines, Italy. American Mineralogist, 58, 835839.Google Scholar
Mumpton, F.A., Jaffe, H.W. and Thompson, C.S. (1965) Coalingite, a new mineral from the New Idria serpentinite, Fresno and San Benito Counties, California. American Mineralogist, 50, 18931913.Google Scholar
Newman, S.P. and Jones, W. (1998) Synthesis, characterization and applications of layered double hydroxides containing organic guests. New Journal of Chemistry, 22, 105115.CrossRefGoogle Scholar
Nickel, E.H. (1976) New data on woodwardite. Mineralogical Magazine, 43, 644647.CrossRefGoogle Scholar
Nickel, E.H. and Clarke, R.M. (1976) Carrboydite, a hydrated sulfate of nickel and aluminum: a new mineral from Western Australia. American Mineralogist, 61, 366372.Google Scholar
Nickel, E.H. and Grice, J.D. (1998) The IMA Commission on New Minerals and Mineral Names: procedures and guidelines on mineral nomenclature, 1998. The Canadian Mineralogist, 36, 913926.Google Scholar
Nickel, E.H. and Wildman, J.E. (1981) Hydrohonessite - a new hydrated Ni-Fe hydroxy-sulphate mineral; its relationship to honessite, carrboydite, and minerals of the pyroaurite group. Mineralogical Magazine, 44, 333337.CrossRefGoogle Scholar
Ona-Nguema, G., Abdelmoula, M., Jorand, F., Benali, O., Géhin, A., Block, J.C. and Génin, J.-M.R. (2002) Iron (II,III) hydroxycarbonate green rust formation and stabilization from lepidocrocite bioreduction Environmental Science and Technology, 36, 1620.Google Scholar
Palache, C., Berman, H. and Frondel, C. (1951) Dana’s System of Mineralogy, seventh edition. Wiley, New York.Google Scholar
Parise, J.B., Theroux, B., Li, R., Loveday, J.S., Marshall, W.G. and Klotz, S. (1998) Pressure dependence of hydrogen bonding in metal deuteroxides: a neutron powder diffraction study of Mn(OD)2 and beta- Co(OD)2. Physics and Chemistry of Minerals, 25, 130137.CrossRefGoogle Scholar
Passaglia, E. and Sacerdoti, M. (1988) Hydrocalumite from Montalto di Castro, Viterbo, Italy. Neues Jahrbuch für Mineralogie Monatshefte, 1988, 454461.Google Scholar
Pastor-Rodriguez, J. and Taylor, H.F.W. (1971) Crystal structure of coalingite. Mineralogical Magazine, 38, 286294.CrossRefGoogle Scholar
Pausch, I., Lohse, H.-H., Schürmann, K. and Allmann, R. (1986) Synthesis of disordered and Al-rich hydrotalcite-like compounds. Clays and Clay Minerals, 34, 507510.CrossRefGoogle Scholar
Peacor, D.R., Dunn, P.J., Kato, A. and Wicks, F.J. (1985) Shigaite, a new manganese aluminum sulphate mineral from the Ioi mine, Shiga, Japan. Neues Jahrbuch für Mineralogie Monatshefte, 1985, 453457.Google Scholar
Pertlik, F. and Dunn, P.J. (1990) Crystal structure of alvanite, (Zn,Ni)Al4(VO3)2(OH)12·2H2O, the first example of an unbranched zweier-single chain vanadate in nature. Neues Jahrbuch fü r Mineralogie Monatshefte, 1990, 385392.Google Scholar
Petterd, W.F. (1910) Catalog of the minerals of Tasmania. Mines Department Publication Hobart, Tasmania, Australia.Google Scholar
Piret, P. and Deliens, M. (1980) La comblainite, (Ni2+ x Co3+ 1-x)(OH)2(CO3)(1-x)/2·yH2O, noveau minéral du groupe de la pyroaurite. Bulletin de Minéralogie, 103, 113117.CrossRefGoogle Scholar
Pollmann, H., Witzke, T. and Kohler, H. (1997) Kuzelite, [Ca4Al2(OH)12][(SO4)·6H2O], a new mineral from Maroldsweisach/Bavaria, Germany. Neues Jahrbuch für Mineralogie Monatshefte, 1997, 423432.Google Scholar
Raade, G., Elliott, C.J. and Din, V.K. (1985) New data on glaucocerinite. Mineralogical Magazine, 49, 583590.CrossRefGoogle Scholar
Rad, U. (1974) Great Meteor and Josephine Seamounts (eastern North Atlantic): Composition and origin of bioclastic sands, carbonate and pyroclastic rocks. ‘‘Meteor’’ Forschungergebnisse I, 9, l-6.Google Scholar
Ramanaidou, E. and Noack, Y. (1987) Palagonites of the Red Sea: a new occurrence of hydroxysulphate. Mineralogical Magazine, 51, 139143.CrossRefGoogle Scholar
Ramesh, T.N., Kamath, P.V. and Shivakumara, C. (2006) Classification of stacking faults and their stepwise elemination during the disorder ? order transformation of nickel hydroxide. Acta Crystallographica, B62, 530536.CrossRefGoogle Scholar
Refait, Ph., Memet, J.B., Bon, C., Sabot, R. and Génin, J.-M.R. (2003) Formation of the Fe(II)-Fe(III) hydroxysulphate green rust during marine corrosion of steel. Corrosion Science, 45, 833845.CrossRefGoogle Scholar
Richardson, M.C. and Braterman, P.S. (2007) Infrared spectra of oriented and nonoriented layered double hydroxides in the range from 4000 to 250 cm-1, with evidence for regular short-range order in a synthetic magnesium-aluminum LDH with Mg:Al = 2:1 but not with Mg:Al = 3:1. Journal of Physical Chemistry, C111, 42094215.Google Scholar
Rius, J. and Allmann, R. (1984) The superstructure of t he doub le laye r mineral wermland it e [Mg7(Al0.57Fe3+ 0.43) 2(OH)18]2+[(Ca0.6Mg0.4) (SO4)2(H2O)12]2-. Zeitschrift für Kristallographie, 168, 133144.CrossRefGoogle Scholar
Rius, J. and Plana, F. (1986) Contribution to the superstructure resolution of the double layer mineral motukoreaite. Neues Jahrbuch für Mineralogie Monatshefte, 1986, 263272.Google Scholar
Rodgers, K.A., Chisholm, J.E., David, R.J. and Nelson, C.S. (1977) Motukoreaite, a new hydrated carbonate, sulphate, and hydroxide of Mg and Al from Auckland, New Zealand. Mineralogical Magazine, 41, 389390.Google Scholar
Rodionov, D., Klingelhö fer, G., Bernhardt, B., Schroder, C., Blumers, M., Kane, S., Trolard, F., Bourrié, G. and Génin, J.-M.R. (2006) Automated Mössbauer spectroscopy in the field and monitoring of fougerite. Hyperfine Interactions, 167, 869873.CrossRefGoogle Scholar
Ross, G.J. and Kodama, H. (1967) Properties of a synthetic magnesium-aluminum carbonate hydroxide and its relationship to magnesium-aluminum double hydroxide, manasseite and hydrotalcite. American Mineralogist, 52, 10361047.Google Scholar
Rouxhet, P.G. and Taylor, H.F.W. (1969) Thermal decomposition of sjögrenite and pyroaurite. Chimia, 23, 480485.Google Scholar
Ruby, C., Upadhyay, C., Géhin, A., Ona-Nguema, G. and Génin, J.-M.R. (2006) In situ redox flexibility of FeII-III oxyhydroxycarbonate green rust and fougerite. Environmental Science and Technology, 40, 46964702.Google ScholarPubMed
Ruby, C., Abdelmoula, M., Naille, S., Renard, A., Khare, V., Ona-Nguema, G., Morin, G. and Génin, J.-M.R. (2010) Oxidation modes and thermodynamics of FeII-III oxyhydroxycarbonate green rust: dissolution-precipitation versus in-situ deprotonation. Geochimica et Cosmochimica Acta, 74, 953966.CrossRefGoogle Scholar
Rusch, B., Génin, J.-M.R., Ruby, C., Abdelmoula, M. and Bonville, P. (2008) Ferrimagnetic properties in FeII-FeIII (oxy)hydroxycarbonate green rusts. Solid State Sciences, 10, 4049.CrossRefGoogle Scholar
Sacerdoti, M. and Passaglia, E. (1988) Hydrocalumite from Latium, Italy - its crystal structure and relationship with related synthetic phases. Neues Jahrbuch für Mineralogie Monatshefte, 1988, 462475.Google Scholar
Sideris, P.J., Nielsen, U.G., Gan, Z.H. and Grey, C.P. (2008) Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy. Science, 321, 113117.CrossRefGoogle ScholarPubMed
Simon, L., François, M., Refait, Ph., Renaudin, G., Lelaurain, M. and Génin, J.-M.R. (2003) Structure of the Fe(II-III) layered double hydroxysulphate green rust two from Rietveld analysis. Solid State Sciences, 5, 327334.CrossRefGoogle Scholar
Sjögren, H. (1894) Contributions to Swedish Mineralogy. Part II. Bulletin of the Geological Institutions of the University of Uppsala, 2, 3974.Google Scholar
Smith, D.G.W. and Nickel, E.H. (2007) A system of codification for unnamed minerals: report of the subcommittee for unnamed minerals of the IMA Commission on New Minerals, Nomenclature and Classification. The Canadian Mineralogist, 45, 9831055.CrossRefGoogle Scholar
Song, Y. and Moon, H.S. (1998) Additional data on reevesite and its Co-analogue, as a new member of the hydrotalcite group. Clay Minerals, 33, 285296.CrossRefGoogle Scholar
Stanimirova, T. (2001) Hydrotalcite polytypes from Snarum, Norway. Annual of the University of Sofia, Faculty of Geology, 94, 7380.Google Scholar
Steeds, J.W. and Morniroli, J.P. (1992) Selected area electron diffraction (SAED) and convergent beam diffraction (CBED). Pp. 3784 in: Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy (P.R. Buseck, editor). Reviews in Mineralogy, 27. Mineralogical Society of America, Washington DC.Google Scholar
Tatarinov, A.V., Sapozhnikov, A.N., Prokudin, S. and Frolova, L.P. (1985) Stichtite in serpentinites of the Terekinsky Ridge (Gornyi Altai). Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 114, 575581.[in Russian].Google Scholar
Taylor, H.F.W. (1969) Segregation and cation-ordering in sjö grenite and pyroaurite. Mineralogical Magazine, 37, 338342.CrossRefGoogle Scholar
Taylor, H.F.W. (1973) Crystal structures of some double hydroxide minerals. Mineralogical Magazine, 39, 377389.CrossRefGoogle Scholar
Taylor, R.M. (1980) Formation and properties of Fe(II) Fe(III) hydroxycarbonate and its possible significance in soil formation. Clay Minerals, 15, 369372.CrossRefGoogle Scholar
Tilley, C.E., Megaw, H.D. and Hey, M.H. (1934) Hydrocalumite (4CaO·Al2O3·12H2O). A new mineral from Scawt Hill, County Antrim. Mineralogical Magazine, 23, 607615.CrossRefGoogle Scholar
Trolard, F., Génin, J.-M.R., Abdelmoula, M., Bourrié, G., Humbert, B. and Herbillon, A.J. (1997) Identification of a green rust mineral in a reductomorphic soil by Mö ssbauer and Raman spectroscopies. Geochimica et Cosmochimica Acta, 61, 11071111.CrossRefGoogle Scholar
Trolard, F., Bourrié, G., Abdelmoula, M., Refait, Ph. and Féder, F. (2007) Fougerite, a new mineral of the pyroaurite-iowaite group: description and crystal structure. Clays and Clay Minerals, 55, 323334.Google Scholar
Uvarova, Y.A., Sokolova, E., Hawthorne, F.C., Karpenko, V.V., Agakhanov, A. and Pautov, L.A. (2005) The crystal chemistry of the ‘‘nickelalumite’’- group minerals. The Canadian Mineralogist 43, 15111519.CrossRefGoogle Scholar
Vysostskii, G.N. (1905) Gley. Eurasian Soil Science (Pochvovedenie), 4, 291327.Google Scholar
Walenta, K. (1981) Cyanophyllit, ein neues Mineral aus der Grube Clara bei Oberwolfach im mittleren Schwarzwald. Chemie der Erde, 40, 195200.Google Scholar
Walenta, K. (1984) Cualstibit, ein neues Sekundärmineral aus der Grube Clara im mittleren Schwarzwald (BRD). Chemie der Erde, 43, 255260.Google Scholar
White, J.S. Jr, Henderson, E.P. and Mason, B. (1967) Secondary minerals produced by weathering of the Wolf Creek meteorite. American Mineralogist, 52, 11901197.Google Scholar
Whitfield, P.S., Davidson, I.J., Mitchell, L.D., Wilson, S.A. and Mills, S.J. (2010) Problem solving with the TOPAS macro language: corrections and constraints in simulated annealing and Rietveld refinement. Materials Science Forum, 651, 1125.Google Scholar
Witzke, T. (1995) Untersuchung natürlicher sulfathaltiger hybrider Schichtstrukturen: Charakterisierung, Systematik, Strukturmodellierung und Rietveld- Verfeinerung. PhD Thesis, Martin-Luther- Universität Halle, Germany.Google Scholar
Witzke, T. (1999) Hydrowoodwardite, a new mineral of the hydrotalcite group from Königswalde near Annaberg, Saxony/Germany and other localities. Neues Jahrbuch für Mineralogie Monatshefte, 1999, 7586.Google Scholar
Witzke, T. and Raade, G. (2000) Zincowoodwardite, [Zn1-xAlx(OH)2][(SO4)x/2(H2O)n], a new mineral of the hydrotalcite group. Neues Jahrbuch fü r Mineralogie Monatshefte, 2000, 455465.Google Scholar
Witzke, T., Pöllmann, H. and Vogel, A. (1995) Struktur und Synthese von [Zn8-xAlOH)16][(SO4)X/2+Y/2 NaY(H2O)6]. Zeitschrift fü r Kristallographie, Supplemental Issue, 9, 252.Google Scholar
Woodhouse, J.N. (2006) The characterization of hydrotalcite-group minerals and their anion exchange capabilities at Mount Keith Nickel mine, Western Australia. Unpublished BSc. Thesis, The University of British Columbia, Vancouver, Canada.Google Scholar
Wyckoff, R.W.G. (1963) Crystal Structures, second edition. Interscience Publishers, New York.Google Scholar
Zamarreño, I., Plana, F., Vasquez, A. and Clague, D.A. (1989) Motukoreaite: a common alteration product in submarine basalts. American Mineralogist, 74, 10541058.Google Scholar
Zigan, F. and Rothbauer, R. (1967) Neutronenbeugungsmessungen am Brucit. Neues Jahrbuch fü r Mineralogie Monatshefte, 1967, 137143.Google Scholar