Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-17T09:43:15.543Z Has data issue: false hasContentIssue false

Mechanical graphite transport in fault zones and the formation of graphite veins

Published online by Cambridge University Press:  05 July 2018

E. Crespo
Affiliation:
Departamento de Cristalografía y Mineralogía, Facultad de Geología, Universidad Complutense de Madrid, 28040 Madrid, Spain
J. Luque*
Affiliation:
Departamento de Cristalografía y Mineralogía, Facultad de Geología, Universidad Complutense de Madrid, 28040 Madrid, Spain
J. F. Barrenechea
Affiliation:
Departamento de Cristalografía y Mineralogía, Facultad de Geología, Universidad Complutense de Madrid, 28040 Madrid, Spain
M. Rodas
Affiliation:
Departamento de Cristalografía y Mineralogía, Facultad de Geología, Universidad Complutense de Madrid, 28040 Madrid, Spain
*

Abstract

This paper describes a vein-shaped graphite occurrence in which, for the first time, the geological, mineralogical and isotopic evidence support its formation by physical remobilization of previously formed syngenetic graphite. The deposit studied is located in the Spanish Central System and it occurs along the contact between a hydrothermal Ag-bearing quartz vein and a graphite-bearing quartzite layer. The characteristics of this occurrence differ from those of fluid-deposited vein-type graphite mineralization in that: (1) graphite flakes are oriented parallel to the vein walls; (2) graphite crystallinity is slightly lower than in the syngenetic precursor (graphite disseminated in the quartzite); and (3) the isotopic signatures of both types of graphite are identical and correspond to biogenic carbon. In addition, the P-T conditions of the hydrothermal Ag-bearing quartz veins in the study area (P <1 kbar, and T up to 360°C) contrast with the high degree of structural order of graphite in the vein. Therefore, physical remobilization of graphite can be regarded as a suitable alternative mechanism to account for some cases of vein-shaped graphite deposits. Such a mechanism would require a previous concentration of disseminated syngenetic graphite promoted, in this case, by the retrograde solubility of quartz. This process would generate monomineralic graphite aggregates enhancing its lubricant properties and permitting graphite to move in the solid state along distances in the range of up to several metres.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acharya, B.C. and Dash, B. (1984) Graphite in Eastern Ghats Precambriam migmatites, Orissa, India. Transactions Royal Society of Edinburgh, Earth Science, 75, 391406.CrossRefGoogle Scholar
Acharya, B.C. and Rao, D.S. (1998) Graphite in Eastern Ghat Complex of Orissa. Geological Survey of India, Special Publication, 44, 190200.Google Scholar
Boyle, R.W. (1991) Auriferous Archean greenstone-sedimentary belts. Economic Geology, Monograph 8, 164191.Google Scholar
Capote, R., Casquet, C. and Fernández-Casals, M.J. (1981) La tectónica hercínica de cabalgamientos en el Sistema Central Español. Cuadernos Geologia Ibérica, 7, 455469.Google Scholar
Concha, A., Oyarzun, R., Lunar, R., Sierra, J., Doblas, M. and Lillo, J. (1992) The Hiendelaencina epithermal silver-base metal district, Central Spain: tectonic and mineralizing processes. Mineralium Deposita, 27, 8389.CrossRefGoogle Scholar
Dissanayake, C.B. (1994) Origin of vein graphite in high-grade metamorphic terrains. Mineralium Deposita, 29, 5767.CrossRefGoogle Scholar
Doblas, M., Oyarzun, R., Lunar, R., Mayor Yagüe, N. and Martínez Frías, J. (1988) Detachment faulting and late Paleozoic epithermal Ag-base-metal mineralization in the Spanish Central System. Geology, 16, 800803.2.3.CO;2>CrossRefGoogle Scholar
Erdosh, G. (1970) Geology of Bogala Mine, Ceylon and the origin of vein-type graphite. Contributions to Mineralogy and Petrology, 5, 375382.Google Scholar
Escuder Viruete, J., Hernáiz Huerta, P.P., Valverde-Vaquero, P., Rodriguez Fernandez, R. and Dunning, G. (1998) Variscan syncollisional extension in the Iberian Massif: structural, metamorphic and geo-chronological evidence from the Somosierra sector of the Sierra de Guadarrama (Central Iberian Zone, Spain). Tectonophysics, 290, 87109.CrossRefGoogle Scholar
Fournier, R.O. (1985) The behaviour of silica in hydrothermal systems. Reviews in Economic Geology, 2, 4561.Google Scholar
Hobbs, B.E. (1987) Principles involved in mobilization and remobilization. Ore Geology Reviews, 3, 3745.CrossRefGoogle Scholar
ITGE (1991) Mapa Geológico de España, serie 2, 1a edicion. Institute Geológico de España, Hoja n° 458 (Prádena), scale 1:50.000, 1 sheet.Google Scholar
Kadounová, Z. (1992) Behaviour of graphite during regional metamorphism and deformation of sedimentary rocks of the Bohemian Massif, Czechoslovakia. Casopis pro Mineralogii a Geologii, 37, 135143.Google Scholar
Katz, M.B. (1987) Graphite deposits of Sri Lanka: a consequence of granulite facies metamorphism. Mineralium Deposita, 22, 1825.CrossRefGoogle Scholar
Kehelpannala, K.V.W. (1999) Epigenetic vein graphite mineralization in the granulite terrain of Sri Lanka. Gondwana Research, 2, 654657.CrossRefGoogle Scholar
Kwiecinska, B. (1980) Mineralogy of natural graphites. Polska Akademia Nauk, Prace Mineralogiczne, 67, 579.Google Scholar
Lamb, W. and Valley, J.W. (1984) Metamorphism of reduced granulites in low-CO2 vapour-free enviroment. Nature, 312, 5658.CrossRefGoogle Scholar
Luque, F.J., Barrenechea, J.F. and Rodas, M. (1993) Graphite geothermometry in low and high temperature regimes: two case studies. Geological Magazine, 130, 501511.CrossRefGoogle Scholar
Luque, F.J., Pasteris, J.D., Wopenka, B., Rodas, M. and Barrenechea, J.F. (1998) Natural fluid-deposited graphite: mineralogical characteristics and mechanisms of formation. American Journal of Science, 298, 471498.CrossRefGoogle Scholar
Martín-Crespo, T., Vindel, E. and López-Garía, J.A. (2002) La mineralization de As-Ag de Bustarviejo: un ejemplo de la actividad hidrotermal pérmica en el Sistema Central. Boletin Sociedad Española Mineralogίa, 25A, 5354.Google Scholar
Ong, T.S. and Yang, H. (2000) Effect of atmosphere on the mechanical milling of natural graphite. Carbon, 38, 20772085.CrossRefGoogle Scholar
Radhika, U.P., Santosh, M. and Wada, H. (1995) Graphite occurrences in southern Kerala: characteristics and genesis. Journal of the Geological Society of India, 45, 653666.Google Scholar
Salver-Disma, F., Du Pasquier, A., Tarascon, J.M., Lassegues, J.C. and Rouzaud, J.N. (1999) Physical characterization of carbonaceous materials prepared by mechanical grinding. Journal of Power Sources, 81-82, 291295.CrossRefGoogle Scholar
Santosh, M. and Wada, H. (1993) Microscale isotopic zonation in graphite crystals: evidence for chaneled CO2 influx in granulites. Earth and Planetary Science Letters, 119, 1926.CrossRefGoogle Scholar
Santosh, M., Wada, H., Satish-Kumar, M. and Binu-Lal, S.S. (2004) Carbon isotope “stratigraphy” in a single graphite crystal: Implications for the crystal growth mechanism of fluid-deposited graphite. American Mineralogist, 88, 16891696.CrossRefGoogle Scholar
Satish-Kumar, M., Wada, H. and Santosh, M. (2002) Constraints on the application of carbon isotope thermometry in high- to ultrahigh-temperature metamorphic terranes. Journal of Metamorphic Geology, 20, 335350.CrossRefGoogle Scholar
Scheele, N. and Hoefs, J. (1992) Carbon isotope fractionation between calcite, graphite and CO2: an experimental study. Contributions to Mineralogy and Petrology, 112, 3545.CrossRefGoogle Scholar
Shengelia, D.M., Akhvlediani, R.A. and Ketskhoveli, D.N. (1979) The graphite geothermometer. Dokladii Akademic Nauk SSSR, 235, 132134.Google Scholar
Silva, K.K.M.W. (1987) Mineralization and wall-rock alteration at the Bogala graphite deposit, Bulathkohupitiya, Sri Lanka. Economic Geology, 82, 17101722.CrossRefGoogle Scholar
Tornos, F., Delgado, A., Casquet, C. and Galindo, C. (2000) 300 Million years of episodic hydrothermal activity: stable isotope evidence from hydrothermal rocks of the Eastern Iberian Central System. Mineralium Deposita, 35, 551569.CrossRefGoogle Scholar
Ubbelohde, A.R. and Lewis, F.A. (1960) Graphite and its Crystal Compounds. Clarendon Press, Oxford, UK, 217 pp.Google Scholar
Von Damm, K.L., Bischoff, J.L. and Rosenbauer, R.J. (1991) Quartz solubility in hydrothermal seawater: an experimental study and equation describing quartz solubility for up to 0.5 M NaCl solutions. American Journal of Science, 291, 9771007.CrossRefGoogle Scholar
Wada, H., Tomita, T., Matsuura, K., Iuchi, K., Ito, M. and Morikiyo, T. (1994) Graphitization of carbonaceous matter during metamorphism with references to carbonate and pelitic rocks of contact and regional metamorphisms, Japan. Contributions to Mineralogy and Petrology, 118, 217228.CrossRefGoogle Scholar
Wakayama, H., Mizuno, J., Fukushima, Y., Nagano, K., Fukunaga, T. and Mizutani, U. (1999) Structural defects in mechanically ground graphite. Carbon, 37, 947952.CrossRefGoogle Scholar
Wopenka, B. and Pasteris, J.D. (1993) Structural characterization of kerogens to granulite-facies graphite: applicability of Raman micrprobe spectroscopy. American Mineralogist, 76, 533557.Google Scholar