Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-01T03:32:52.642Z Has data issue: false hasContentIssue false

Maneckiite, ideally NaCa2Fe2+2(Fe3+Mg)Mn2(PO4)6(H2O)2, a new phosphate mineral of the wicksite supergroup from the Michałkowa pegmatite, Góry Sowie Block, southwestern Poland

Published online by Cambridge University Press:  02 January 2018

Adam Pieczka*
Affiliation:
AGH University of Science and Technology, Department of Mineralogy, Petrography and Geochemistry 30-059 Kraków, Mickiewicza 30, Poland
Frank C. Hawthorne
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
Bożena Gołębiowska
Affiliation:
AGH University of Science and Technology, Department of Mineralogy, Petrography and Geochemistry 30-059 Kraków, Mickiewicza 30, Poland
Adam Włodek
Affiliation:
AGH University of Science and Technology, Department of Mineralogy, Petrography and Geochemistry 30-059 Kraków, Mickiewicza 30, Poland
Anna Grochowina
Affiliation:
AGH University of Science and Technology, Department of Mineralogy, Petrography and Geochemistry 30-059 Kraków, Mickiewicza 30, Poland
*

Abstract

Maneckiite, ideally NaCa2Fe2 (Fe3+Mg)Mn2(PO4)6(H2O)2, was found in a pegmatite at Michałkowa, Góry Sowie Block, SW Poland. The mineral forms subhedral and anhedral crystals ~150 μm × 150 μm in the outer zone of phosphate nodules, where it is associated with fluorapatite, wolfeite, Ca-rich graftonite and alluaudite-group minerals. Maneckiite is transparent, dark brown, with a colourless streak and vitreous lustre, brittle, and has a good cleavage // {010}, a splintery fracture and a Mohs hardness of ~5. The calculated density is 3.531 g cm–3. Maneckiite is pleochroic: α = dark green, β = dark blue/green, γ = light brown/tan, biaxial (+) with refractive indices α = 1.698(2), β = 1.706(2), γ = 1.727(2) and birefringence Δ = ~0.03; 2Vmeas. = 65.9 (1.5)° and 2Vcalc. = 64°, dispersion is obscured by the dark colour, and optical orientation X//a, Y//b, Z//c. Maneckite is orthorhombic (Pcab) and has unit-cell parameters a = 12.526(4) Å, b = 12.914(5) Å, c = 11.664(4) Å and V = 1886.8(5) Å3. The strongest reflections are (dhkl in Å; I; hkl): 2.759, 100, 402; 2.916, 78, 004; 3.020, 68, 401; 2.844, 35, 014; 2.869, 31, 240; 2.825, 30, 042. Maneckiite has the wicksite structure and is its M(3)Mn-analogue. The mineral crystallized as a product of Na- and Ca-metasomatism induced by a HT fluid in the presence of Al3+ from a neighbouring aluminosilicate melt. A Gladstone-Dale index, 0.027, places maneckiite in the category ‘excellent’.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartelmehs, K.L., Bloss, F.D., Downs, R.T. and Birch, J. B. (1992) EXCALIBR II. Zeitschrift für Kristallographie, 199, 185196.CrossRefGoogle Scholar
Bianchi, R, Pilati, T. and Mannussi, G. (1987) Crystal structure of grischunite. American Mineralogist, 72, 12251229.Google Scholar
Aftalion, M. and Bowes, D.R. (2002) U-Pb zircon isotopic evidence for Mid-Devonian migmatite formation in the Gory Sowie domain of the Bohemian Massif, Sudeten Mountains, SW Poland. Neues Jahrbuch für Mineralogie, Monatshefte, 4, 182192.CrossRefGoogle Scholar
Bröcker, M., Żelazniewicz, A. andEnders, M. (1998) Rb-Sr and U-Pb geochronology of migmatitic gneisses from the Góry Sowie (West Sudetes, Poland): the importance of Mid-Late Devonian metamorphism. Journal of the Geological Society, London, 155, 10251036.CrossRefGoogle Scholar
Brueckner, H.K., Blusztajn, J. and Bakun-Czubarow, N. (1996) Trace element and Sm-Nd “age” zoning in garnets from peridotites of the Caledonian and Variscan mountains and tectonic implications. Journal of Metamorphic Geology, 14, 6173.CrossRefGoogle Scholar
Cámara, F., Oberti, R., Chopin, C. and Medenbach, O. (2006) The arrojadite enigma: I. A new formula and a new model for the arrojadite structure. American Mineralogist, 91, 12491259.CrossRefGoogle Scholar
Černý, P. and Ercit, T.S. (2005) The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43, 20052026.CrossRefGoogle Scholar
Cooper, M.A. and Hawthorne, F.C. (1997) The crystal structure of wicksite. The Canadian Mineralogist, 35, 777784.Google Scholar
Gaines, R.V., Skinner, H.C., Foord, E.E., Mason, B. and Rosenzweig, A. (1997) Dana's New Mineralogy. 8th Edition. John Wiley & Sons, New York, USA.Google Scholar
Galliski, M.A., Cooper, M.A., Hawthorne, F.C. and Černý, P. (1999) Bederite, a new pegmatite phosphate mineral from Nevados de Palermo, Argentina: Description and crystal structure. American Mineralogist, 84, 16741679.CrossRefGoogle Scholar
Gordon, S.M., Schneider, D.A., Manecki, M. and Holm, D.K. (2005) Exhumation and metamorphism of an ultrahigh-grade terrane: geochronometric investigations of the Sudetes Mountains (Bohemia), Poland and Czech Republic. Journal of the Geological Society, London, 162, 841855.CrossRefGoogle Scholar
Graeser, S., Schwander, H. and Suhner, B. (1984) Grischunite, (CaMn2[AsO4]2), a new mineral species from the Swiss Alps. Schweizerische Mineralogische und Petrographische Mitteilungen, 64, 110 [in German with English abstract].Google Scholar
Grew, E.S., Armbruster, T., Medenbach, O., Yates, M.G. and Carson, Ch.J. (2007) Tassieite, (Na,Q)Ca2(Mg, Fe2+,Fe3+)2(Fe3+,Mg)2(Fe2+,Mg)2(PO4)6-2H2O, a new hydrothermal wicksite-group mineral in fluor-apatite nodules from granulite-facies paragneiss in the Larsemann Hills, Prydz Bay, East Antarctica. The Canadian Mineralogist, 45, 293305.CrossRefGoogle Scholar
Hawthorne, F.C, Ungaretti, L. and Oberti, R. (1995) Site populations in minerals: terminology and presentation of results of crystal-structure refinement. The Canadian Mineralogist, 33, 907911.Google Scholar
Jablonska, J. (2015) Mineralogical characteristics of feldspars from pegmatites near Michałkowa in the Sowie Mountains. MSc thesis, Faculty of Earth Sciences and Environmental Management, University of Wrocław, Wrocław [in Polish with English abstract].Google Scholar
Kampf, A.R., Mills, S.J., Housley, R.M., Favreau, G., Boulliard, J-C. and Bourgoin, V (2012) Angarfite, NaFe-+(PO4)4(OH)4-4H2O, a new mineral species from the Angarf-Sud pegmatite, Morocco: description and crystal structure. The Canadian Mineralogist, 50, 781791.CrossRefGoogle Scholar
Kryza, R. (1981) Migmatization in gneisses of the northern part of the Sowie Góry, Sudetes. Geologia Sudetica, 16, 791 [in Polish, English summary].Google Scholar
Kryza, R. and Fanning, C.M. (2007) Devonian deep-crustal metamorphism and exhumation in the Variscan Orogen: evidence from SHRIMP zircon ages from the HT—HP granulites and migmatites of the Góry Sowie (Polish Sudetes). Geodinamica Acta, 20, 159176.CrossRefGoogle Scholar
Lodzinski, M. (2007) Mineralogical study of beryls from Polish and Czech Sudetes. Prace Mineralogiczne, PAN Kraków, 93, 5179 [in Polish, English summary].Google Scholar
Łodzinski, M. and Sitarz, M. (2009) Chemical and spectroscopic characterization of some phosphate accessory minerals from pegmatites of the Sowie Góry Mts, SW Poland. Journal of Molecular Structure, 924-926, 442447.CrossRefGoogle Scholar
Mandarino, J.A. (1981) The Gladstone — Dale relationship: Part IV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441–150.Google Scholar
Mazur, S., Aleksandrowski, P., Kryza, R. and Oberc-Dziedzic, T (2006) The Variscan Orogen in Poland. Geological Quarterly, 50, 89118.Google Scholar
Novák, M. (2005) Granitic pegmatites of the Bohemian Massif (Czech Republic); mineralogical, geochemical and regional classification and geological significance. Acta Musei Moraviae-Scientiae Geologicae, 90, 375 [in Czech, English summary].Google Scholar
O'Brien, P.J., Kröner, A., Jaeckel, P., Hegner, E., Żelazniewicz, A. and Kryza, R. (1997) Petrological and isotope studies on Palaeozoic high-pressure granulites. Góry Sowie Mts, Polish Sudetes. Journal of Petrology, 38, 433456.CrossRefGoogle Scholar
Peacor, D.R., Dunn, PI, Ramik, R.A., Campbell, T.J. and Roberts, W.L. (1985) Awicksite-like mineral from the Bull Moose Mine, South Dakota. The Canadian Mineralogist, 23, 247249.Google Scholar
Pieczka, A., Hawthorne, EC, Gołebiowska, B. and Włodek, A. (2015a) Maneckiite, IMA 2015-056. CNMNC Newsletter No. 27, October 2015, page 1227; Mineralogical Magazine, 79, 12291236.CrossRefGoogle Scholar
Pieczka, A., Szuszkiewicz, A., Szełeg, E., Janeczek, J., Nejbert, K. (2015b) Granitic pegmatites of the Polish part of the Sudetes (NE Bohemian massif, SW Poland). 7th International Symposium on Granitic pegmatites, Książ, Poland, June 17-19, 2015. Fieldtrip Guidebook C, 73-103.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) “PAP” procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis (Armstrong, J.T., editor). San Francisco Press, San Francisco, California, USA.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica Section C, 71, 38.Google ScholarPubMed
Simmons, W.B. and Webber, K. (2008) Pegmatite genesis: state of art. European Journal of Mineralogy, 20, 421438.CrossRefGoogle Scholar
Smith, D.G.W. and Nickel, E.H. (2007) A system for codification for unnamed minerals: report of the Subcommittee for Unnamed Minerals of the IMA Commission on New Minerals, Nomenclature and Classification. The Canadian Mineralogist, 45, 9831055.CrossRefGoogle Scholar
Strunz, H. and Nickel, E.H. (2001) Strunz Mineralogical Tables, Ninth Edition. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Germany.Google Scholar
Sturman, B.D., Peacor, D.R. and Dunn, P.J. (1981) Wicksite, a new mineral from northeastern Yukon Territory. The Canadian Mineralogist, 19, 377380.Google Scholar
Szuszkiewicz, A., Szełeg, E., Pieczka, A., Ilnicki, S., Nejbert, K., Turniak, K., Banach, M., Łodzinski, M., Różniak, R., Michałowski, P. (2013) The Julianna pegmatite vein system at the Piława Górna mine, Góry Sowie Block, SW Poland — preliminary data on geology and descriptive mineralogy. Geological Quarterly, 57, 467484.CrossRefGoogle Scholar
Timmermann, H., Parrish, R.R., Noble, S.R. and Kryza, R. (2000) New U-Pb monazite and zircon data from the Sudetes Mountains in SW Poland; evidence for a single-cycle Variscan Orogeny. Journal of the Geological Society, London, 157, 265268.CrossRefGoogle Scholar
Turniak, K., Pieczka, A., Kennedy, A.K., Szełeg, E., Ilnicki, S., Nejbert, K., Szuszkiewicz, A., (2015) Crystallisation age of the Julianna pegmatite system (Góry Sowie Block, NE margin of the Bohemian massif): evidence from U-Th-Pb SHRIMP monazite and CHIME uraninite studies. 7th International Symposium on Granitic Pegmatites, PEG 2015 Książ, Poland. Book of Abstracts, 111-112.Google Scholar
van Breemen, O., Bowes, D.R., Aftalion, M. and Żelazniewicz, A. (1988) Devonian tectonothermal activity in the Sowie Góry gneissic block, Sudetes, southwestern Poland: evidence from Rb—Sr and U—Pb isotopic studies. Annales Societatis Geologorum Poloniae, 58, 310.Google Scholar
Websky, M. (1868) Über Sarkopsid und Kochelite, zwei neue Minerale aus Schlesien. Zeitschrift der Deutschen Geologischen Gesellschaft, 20, 245257.Google Scholar
Żelazniewicz, A. (1990) Deformation and metamorphism in the Góry Sowie gneiss complex, Sudetes, SW Poland. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 179, 129157.Google Scholar