Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-30T03:20:18.550Z Has data issue: false hasContentIssue false

Kalithallite, K3Tl3+Cl6⋅2H2O, a new mineral with trivalent thallium from the Tolbachik volcano, Kamchatka, Russia

Published online by Cambridge University Press:  21 November 2022

Igor V. Pekov*
Affiliation:
Faculty of Geology, Moscow State University, Leninskie Gory, 119991 Moscow, Russia
Maria G. Krzhizhanovskaya
Affiliation:
Department of Crystallography, St Petersburg State University, University Embankment 7/9, 199034 St Petersburg, Russia
Vasiliy O. Yapaskurt
Affiliation:
Faculty of Geology, Moscow State University, Leninskie Gory, 119991 Moscow, Russia
Dmitry I. Belakovskiy
Affiliation:
Fersman Mineralogical Museum of Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Evgeny G. Sidorov
Affiliation:
Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences, Piip Bulevard 9, 683006 Petropavlovsk-Kamchatsky, Russia
Pavel S. Zhegunov
Affiliation:
Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences, Piip Bulevard 9, 683006 Petropavlovsk-Kamchatsky, Russia
*
*Author for correspondence: Igor V. Pekov, Email: igorpekov@mail.ru

Abstract

A new mineral kalithallite, K3Tl3+Cl6⋅2H2O, was found in an active fumarole belonging to the Northern fumarole field at the First scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. Kalithallite is a product of the relatively low-temperature (70–150°C) interactions involving high-temperature sublimate minerals, volcanic gas and atmospheric water vapour. The associated minerals are cryobostryxite, KZnCl3⋅2H2O, halite, sylvite, opal and gypsum. Kalithallite forms lamellar to tabular crystals up to 5 × 30 × 40 μm combined in open-work aggregates up to 1 mm across. It is transparent, colourless in individuals and white to pale cream coloured or pale beige in aggregates, with vitreous lustre. Dcalc = 3.01 g cm–3. Kalithallite is optically uniaxial (–), ɛ = 1.656(3) and ω = 1.662(3). The chemical composition (wt.%, electron-microprobe data, H2O calculated by stoichiometry) is: K 17.72, Zn 0.85, Tl 38.76, Cl 35.91, H2Ocalc 5.99, total 99.23. The empirical formula calculated on the basis of K+Zn+Tl+Cl = 10 apfu is K2.72Zn0.06Tl1.14Cl6.08⋅2H2O. Kalithallite is tetragonal, I4/mmm, a = 15.9333(5), c = 18.1088(7) Å, V = 4595.2(4) Å3 and Z = 14. The strongest reflections of the powder X-ray diffraction (XRD) pattern [d,Å(I)(hkl)] are: 5.98(100)(202); 5.64(36)(220); 3.984(20)(400); 3.528(30)(224); 3.315(22)(422); 2.890(15)(334); and 2.817(24)(206, 440). Kalithallite is isotypical to synthetic K3Tl3+Cl6⋅2H2O. The crystal structure was refined from the powder XRD data using the Rietveld method, RBragg = 0.55%, Rp = 0.56%, and Rwp = 0.75%. The structure contains Tl3+Cl6 octahedra and K-centred polyhedra of three types: KCl8, KCl8(H2O) and KCl7(H2O)2. The mineral is named as a kalium–thallium ordered compound.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Deceased 20 March 2021

Associate Editor: Owen Peter Missen

References

Boehme, R., Rath, J., Grunwald, B. and Thiele, G. (1980) Über zwei Modifikationen von Tl2Cl3 – valenzgemischten Thallium(I)-hexahalogenothallaten(III) Tl3(TlCl6). Zeitschrift für Naturforschung, Teil B. Anorganische Chemie, Organische Chemie, 35, 13661372.Google Scholar
Brese, N.E. and O`Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146, 104107 [in Russian].Google Scholar
Bruker, AXS (2014) Topas 5.0: General Profile and Structure Analysis Software for Powder Diffraction Data. Karlsruhe, Germany.Google Scholar
Campostrini, I., Demartin, F. and Gramaccioli, C.M. (2008) Hephaistosite, TlPb2Cl5, a new mineral species from La Fossa crater, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 46, 701708.CrossRefGoogle Scholar
Demartin, F., Gramaccioli, C.M. and Campostrini, I. (2009) Steropesite, Tl3BiCl6, a new thallium bismuth chloride from La Fossa crater, Vulcano, Aeolian islands, Italy. The Canadian Mineralogist, 47, 373380.CrossRefGoogle Scholar
Fedotov, S.A. and Markhinin, Y.K. (editors) (1983) The Great Tolbachik Fissure Eruption. Cambridge University Press, New York.Google Scholar
Glaser, J. (1980) Crystal and molecular structure of potassium tetrachlorothallate(III). Acta Chemica Scandinavica, A34, 7576.CrossRefGoogle Scholar
Hoard, J.L. and Goldstein, L. (1935) The structure of potassium hexachlorothalliate dihydrate. Journal of Chemical Physics, 3, 645649.CrossRefGoogle Scholar
Karpova, Kh.N., Kon'kova, E.A., Larkin, E.D. and Savel'ev, V.F. (1958) Avicennite, a new thallium mineral. Doklady Akademii Nauk Uzbekskoi SSR, 2, 2325 [in Russian].Google Scholar
Kasatkin, A.V., Anisimova, G.S., Nestola, F., Plášil, J., Sejkora, J., Škoda, R., Sokolov, E.P., Kondratieva, L.A. and Kardashevskaia, V.N. (2022) Amgaite, IMA 2021–104. CNMNC Newsletter No. 66, page 360. Mineralogical Magazine, 86, 359362.Google Scholar
Knop, O., Cameron, T.S., Adhikesavalu, D., Vincent, B.R. and Jenkins, J.A. (1987) Crystal chemistry of complex indium(III) and other M(III) halides, with a discussion of M–Cl bond lengths in complex M(III) chlorides and of the structures of and hydrogen bonding in (NH4)2[InCl5(H2O)], K3InCl6nH2O, (MeNH3)4[InCl6]Cl, and (Me2NH2)4[InCl6]Cl. Canadian Journal of Chemistry, 65, 15271556.CrossRefGoogle Scholar
Okrugin, V., Favero, M., Liu, A., Etschmann, B., Plutachina, E., Mills, S., Tomkins, A.G., Lukasheva, M., Kozlov, V., Moskaleva, S., Chubarov, M. and Brugger, J. (2017) Smoking gun for thallium geochemistry in volcanic arcs: Nataliyamalikite, TlI, a new thallium mineral from an active fumarole at Avacha Volcano, Kamchatka Peninsula, Russia. American Mineralogist, 102, 17361746.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Britvin, S.N., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2015a) New zinc and potassium chlorides from fumaroles of the Tolbachik volcano, Kamchatka, Russia: mineral data and crystal chemistry. II. Flinteite, K2ZnCl4. European Journal of Mineralogy, 27, 581588.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Britvin, S.N., Yapaskurt, V.O., Chukanov, N.V., Lykova, I.S., Sidorov, E.G. and Pushcharovsky, D.Yu. (2015b) New zinc and potassium chlorides from fumaroles of the Tolbachik volcano, Kamchatka, Russia: mineral data and crystal chemistry. III. Cryobostryxite, KZnCl3⋅2H2O. European Journal of Mineralogy, 27, 805812.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Belakovskiy, D.I., Yapaskurt, V.O., Vigasina, M.F., Lykova, I.S., Sidorov, E.G. and Pushcharovsky, D.Yu. (2015c) Chrysothallite K6Cu6Tl3+Cl17(OH)4⋅H2O, a new mineral species from the Tolbachik volcano, Kamchatka, Russia. Mineralogical Magazine, 79, 365376.CrossRefGoogle Scholar
Pekov, I.V., Krzhizhanovskaya, M.G., Yapaskurt, V.O., Belakovskiy, D.I. and Sidorov, E.G. (2017) Kalithallite, IMA 2017–044. CNMNC Newsletter No. 39, page 1280. Mineralogical Magazine, 81, 12791286.Google Scholar
Pekov, I.V., Agakhanov, A.A., Zubkova, N.V., Koshlyakova, N.N., Shchipalkina, N.V., Sandalov, F.D., Yapaskurt, V.O., Turchkova, A.G. and Sidorov, E.G. (2020) Oxidizing-type fumaroles of the Tolbachik Volcano, a mineralogical and geochemical unique. Russian Geology and Geophysics, 61, 675688.CrossRefGoogle Scholar
Roberts, A.C., Venance, K.E., Seward, T.M., Grice, J.D. and Paar, W.H. (2006) Lafossaite, a new mineral from the La Fossa Crater, Vulcano, Italy. Mineralogical Record, 37, 165168.Google Scholar
Rudnick, R.L. and Gao, S. (2003) The Composition of the Continental Crust. In: Treatise on Geochemistry, 3, The Crust (Holland, H.D. and Turekian, K.K., editors). Elsevier-Pergamon, Oxford, UK.Google Scholar
Siidra, O.I., Vergasova, L.P., Krivovichev, S.V., Kretser, Y.L., Zaitsev, A.N. and Filatov, S.K. (2014a) Unique thallium mineralization in the fumaroles of Tolbachik volcano, Kamchatka peninsula, Russia. I. Markhininite, Tl+Bi(SO4)2. Mineralogical Magazine, 78, 16871698.CrossRefGoogle Scholar
Siidra, O.I., Vergasova, L.P., Kretser, Y.L., Polekhovsky, Y.S., Filatov, S.K. and Krivovichev, S.V. (2014b) Unique thallium mineralization in the fumaroles of Tolbachik volcano, Kamchatka peninsula, Russia. II. Karpovite, Tl2VO(SO4)2(H2O). Mineralogical Magazine, 78, 16991709.CrossRefGoogle Scholar
Siidra, O.I., Vergasova, L.P., Kretser, Y.L., Polekhovsky, Y.S., Filatov, S.K. and Krivovichev, S.V. (2014c) Unique thallium mineralization in the fumaroles of Tolbachik volcano, Kamchatka peninsula, Russia. III. Evdokimovite, Tl4(VO)3(SO4)5(H2O)5. Mineralogical Magazine, 78, 17111724.CrossRefGoogle Scholar
Thiele, G. and Grunwald, B. (1983) Über die Pentachlorothallate(III) K2TlCl5⋅2H2O und M2TlCl5⋅H2O (M = Rb, NH4). Zeitschrift für Anorganische und Allgemeine Chemie, 498, 105114.CrossRefGoogle Scholar
Thiele, G. and Rink, W. (1975) Die Kristallstruktur von Thalliumdichlorid, TlCl2. Zeitschrift für Anorganische und Allgemeine Chemie, 414, 231235.CrossRefGoogle Scholar
Ungelenk, J. (1962) Zur Polymorphie der Thalliumhalogenide in Aufdampfschichten. Naturwissenschaften, 49, 252253.CrossRefGoogle Scholar
Wignacourt, J.P., Novogorocki, G., Mairesse, G. and Barbier, P. (1980) Evidence for ionic isomerism in complex salts. X-ray evidence in K3InCl6⋅H2O. Reviews in Inorganic Chemistry, 2, 207217.Google Scholar
Zelenski, M. and Taran, Y. (2012) Volcanic emissions of molecular chlorine. Geochimica et Cosmochimica Acta, 87, 210226.CrossRefGoogle Scholar
Zemann, J. (1993) Thallium in Mineralogie und Geochemie. Mitteilungen der Österreichischen Mineralogischen Gesselschaft, 138, 7591.Google Scholar
Supplementary material: PDF

Pekov et al. supplementary material

Pekov et al. supplementary material 1

Download Pekov et al. supplementary material(PDF)
PDF 84 KB
Supplementary material: File

Pekov et al. supplementary material

Pekov et al. supplementary material 2

Download Pekov et al. supplementary material(File)
File 6.2 KB