Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-25T01:29:11.369Z Has data issue: false hasContentIssue false

Iyoite, MnCuCl(OH)3 and misakiite, Cu3Mn(OH)6Cl2: new members of the atacamite family from Sadamisaki Peninsula, Ehime Prefecture, Japan

Published online by Cambridge University Press:  02 January 2018

D. Nishio–hamane*
Affiliation:
Institute for Solid State Physics, the University of Tokyo, Kashiwa, Chiba 277-8581, Japan
K. Momma
Affiliation:
Department of Geology and Palaeontology, National Museum of Nature and Science, Tsukuba 305-0005, Japan
M. Ohnishi
Affiliation:
12-43 Takehana Ougi-cho, Yamashina-ku, Kyoto 607-8082, Japan
N. Shimobayashi
Affiliation:
Department of Geology and Mineralogy, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
R. Miyawaki
Affiliation:
Department of Geology and Palaeontology, National Museum of Nature and Science, Tsukuba 305-0005, Japan
N. Tomita
Affiliation:
Department of Earth Science, Faculty of Science, Ehime University, Matsuyama, Ehime 790-8577, Japan
R. Okuma
Affiliation:
Institute for Solid State Physics, the University of Tokyo, Kashiwa, Chiba 277-8581, Japan
A. R. Kampf
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
T. Minakawa
Affiliation:
Department of Earth Science, Faculty of Science, Ehime University, Matsuyama, Ehime 790-8577, Japan

Abstract

Two new members of the atacamite family were discovered recently in the Sadamisaki Peninsula, Ehime Prefecture, Japan. Iyoite, MnCuCl(OH)3, is an Mn-Cu ordered analogue of botallackite, while misakiite, Cu3Mn(OH)6Cl2, is an Mn-rich analogueof kapellasite. Both minerals occur in manganese ore crevices in close association with one another. Iyoite forms radial and dendritic aggregates consisting of pale green, bladed crystals. Misakiite commonly exists in emerald green, tabular, hexagonal crystals. The densities of iyoite andmisakiite were calculated to be 3.22 and 3.42 g cm–3 based on their empirical formulae and powder X-ray diffraction data. Under the same axial setting of botallackite, iyoite is monoclinic, space group P21/m, a = 5.717(2), b = 6.586(2), c= 5.623(3) Å, β = 88.45(3)° and V = 211.63(15) Å3. Misakiite is trigonal, space group P3m1, with a = 6.4156(4), c = 5.7026(5) Å and V = 203.27(3) Å3. The structures of both mineralsare classified as layer type and the two are closely related. These new minerals were formed by the reaction between seawater and naturally-occurring manganese ores including native copper. These minerals are challenging to produce synthetically. Misakiite was synthesized successfully usinga hydrothermal method, while iyoite could not be made.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Braithwaite, R.S.W., Mereiter, K., Paar, W.H. and Clark, A.M. (2004) Herbertsmithite, Cu3Zn(OH)6Cl2, a new species, and the definition of paratacamite. Mineralogical Magazine, 68, 527539.CrossRefGoogle Scholar
Clissold, M.E., Leverett, P., Williams, P.A., Hibbs, D.E. and Nickel, E.H. (2007) The structure of gillardite, the Ni-analogue of herbertsmithite, from Widgiemooltha, Western Australia. The Canadian Mineralogist, 45, 317320.CrossRefGoogle Scholar
Colman, R.H., Sinclair, A. and Wills, A.S. (2010) Comparisons between haydeeite, α-Cu3Mg(OD)6Cl2, and kapellasite, α-Cu3Zn(OD)6Cl2, isostructural S = 1/2 Kagome Magnets. Chemistry of Materials, 22, 57745779.CrossRefGoogle Scholar
Fleet, M.E. (1975) Crystal-structure of paratacamite, Cu2(OH)3Cl. Acta Crystallographica, B31, 183187.CrossRefGoogle Scholar
Grice, J.D., Szymansk, i J.T. and Jambor, J.L. (1996) Crystal structure of clinoatacamite, a new polymorph of Cu2(OH)3Cl. The Canadian Mineralogist, 34, 6172.Google Scholar
Hawthorne, F.C. (1985) Refinement of the crystal-structure of botallackite. Mineralogical Magazine, 49, 8789.CrossRefGoogle Scholar
Kampf, A.R., Sciberras, M.J., Leverett, P., Williams, P.A., Malcherek, T., Schlüter, J., Welch, M.D., Dini, M. and Molina Donoso, A.A. (2013a) Paratacamite-(Mg), Cu3(Mg,Cu)Cl2(OH)6; a new substituted basic copper chloride mineral from Camerones, Chile. Mineralogical Magazine, 77, 31133124 CrossRefGoogle Scholar
Kampf, A.R., Sciberras, Ml, Williams, P.A., Dini, M. and Donoso, A.A.M. (2013b) Leverettite from the Torrecillas mine, Iquique Provence, Chile: the Co-analogue of herbertsmithite. Mineralogical Magazine, 77, 30473054.CrossRefGoogle Scholar
Krause, W., Bernhardt, H.J., Braithwaite, R.S.W., Kolitsch, U. and Pritchard, R. (2006) Kapellasite, Cu3Zn(OH)6Cl2, a new mineral from Lavrion, Greece, and its crystal structure. Mineralogical Magazine, 70, 329340.CrossRefGoogle Scholar
Malcherek, T. and Schlüter, J. (2007) Cu3MgCl2(OH)6 and the bond-valence parameters of the OH—Al bond. Acta Crystallographica, B63, 157160.CrossRefGoogle Scholar
Malcherek, T., Bindi, L., Dini, M., Ghiara, M.R., Molina Donoso, A., Nestola, F., Rossi, M. and Schlüter, J. (2014) Tondiite, Cu3Mg(OH)6Cl2, the Mg-analogue of herbertsmithite. Mineralogical Magazine, 78, 583590.CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.CrossRefGoogle Scholar
Nozaki, T., Kato, Y and Suzuki, K. (2013) Late Jurassic ocean anoxic event: evidence from voluminous sulphide deposition and preservation in the Panthalassa. Scientific Reports, 3, 1889.CrossRefGoogle ScholarPubMed
Parise, J.B. and Hyde, B.G. (1986) The structure of atacamite and its relationship to spinel. Acta Crystallographica, C42, 12771280.Google Scholar
Palatinus, L. and Chapuis, G. (2007) SUPERFLIP-a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 786790.CrossRefGoogle Scholar
Pollard, A.M., Thomas R.G. and Williams P.A. (1989) Synthesis and stabilities of the basic copper(II) chlorides atacamite, paratacamite and botallackite. Mineralogical Magazine, 53, 557563.CrossRefGoogle Scholar
Rogers, A.F. (1924) Kempite, a new manganese mineral from California. American Journal of Science, 8, 145150.CrossRefGoogle Scholar
Saini-Eidukat, B., Kucha, H. and Keppler, H. (1994) Hibbingite, γ-Fe2(OH)3Cl, a new mineral from the Duluth Complex, Minnesota, with implications for the oxidation of Fe-bearing compounds and the transport of metals. American Mineralogist, 79, 555561.Google Scholar
Sciberras, M.J., Leverett, P., Williams, P.A., Hibbs, D.E., Malcherek, T., Schlüter, J., Welch, M., Downes, P.J. and Kampf, A.R. (2014) Paratacamite-(Ni), Cu3(Ni, Cu)Cl2(OH)6, a new mineral from the Carr Boyd Rocks mine, Western Australia. Australian Journal of Mineralogy, 17, 3944.Google Scholar
Seto, Y., Nishio-Hamane, D., Nagai, T and Sata, N. (2010) Development of a software suite on X-ray diffraction experiments. Review of High Pressure Science and Technology, 20, 269276.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Wilson, A.J.C. (1992) International Tables for Crystallography Volume C. Kluwer, Dordrecht, The Netherlands.Google Scholar
Zenmyo, K., Kubo, H., Tokita, M., Hamasaki, T., Hagihala, M. and Zheng, X-G. (2011) Proton NMR study of pyrochlore-like atacamite Mn2Cl(OH)3 . Journal of the Physical Society of Japan, 80, 024704.CrossRefGoogle Scholar
Zheng, X.G. and Xu, C.N. (2004) Antiferromagnetic transition in botallackite Cu2Cl(OH)3 . Solid State Communications, 131, 509511.CrossRefGoogle Scholar