Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-25T01:25:08.115Z Has data issue: false hasContentIssue false

Hydrothermal mineralogy of calcareous sandstones from the Colorado River delta in the Cerro Prieto geothermal system, Baja California, Mexico

Published online by Cambridge University Press:  05 July 2018

Peter Schiffman
Affiliation:
Institute of Geophysics and Planetary Physics, University of California, Riverside, California 92521, USA Department of Geology, University of California, Davis, California 95616, USA
Dennis K. Bird
Affiliation:
Department of Geology, Stanford University, Stanford, California 94305, USA
Wilfred A. Elders
Affiliation:
Institute of Geophysics and Planetary Physics, University of California, Riverside, California 92521, USA

Abstract

The Cerro Prieto geothermal system provides a unique opportunity for the detailed study of calc-silicate mineral transitions between the diagenetic clay-carbonate and greenschist facies within the terrigenous sediments of the Colorado River delta. In this system, progressive devolatization reactions within carbonate-cemented, quartzofeldspathic sediment have produced a distinct hydrothermal mineral zonation at temperatures between 200–370°C and fluid pressures below 0.3 kbar. Descriptive and compositional data are presented for these minerals which include wairakite, epidote, prehnite, actinolite, clinopyroxene, garnet, sphene, biotite, microcline, and calcite. Partitioning of octahedral Fe, Mg, and Al between coexisting authigenic silicates is comparable with data from higher temperature metamorphic rocks and demonstrates an approach to local equilibrium within this system. Calculated fugacities of oxygen at temperatures above 300°C are (with rare exception) more reducing than that defined by the quartz-fayalite-magnetite buffer, a result consistent with the scarcity of hematite and grandite and the ubiquitous presence of organic material in Cerro Prieto sandstones.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albee, A. L., and Ray, L. (1970) Anal. Chem. 42, 1409-14.CrossRefGoogle Scholar
Barker, C. E., and Elders, W. A. (1981) Geothermics, 10, 207-23.CrossRefGoogle Scholar
Bence, A. E., and Albee, A. L. (1968) J. Geol. 76, 382406.Google Scholar
Bird, D. K. and Helgeson, H. C. (1980) Am. J. Sci. 280, 907-41.CrossRefGoogle Scholar
Bird, D. K. and Norton, D. L. (1981) Geochim. Cosmochim. Acta, 45, 1479-93.CrossRefGoogle Scholar
Bird, D. K., Schiffman, P., Elders, W. A., Williams, A. E., and McDowell, S. D. (1984) Econ. Geol. 70, 671-95.CrossRefGoogle Scholar
Boles, J. R., and Coombs, D. S. (1977) Am. J. Sci. 277, 982-1012.CrossRefGoogle Scholar
Bowen, N. L. (1940) J. Geol. 48, 225-74.CrossRefGoogle Scholar
Colby, J. W. (1968) Advances in X-ray Analysis II, 287305.CrossRefGoogle Scholar
Elders, W. A., Hoagland, J. E., McDowell, S. D., and Cobo, J. M. (1979) Geothermics, 8, 201-5.CrossRefGoogle Scholar
Bird, D. K., Williams, A. E., and Schiffman, P. (1984) 13, 27-47.CrossRefGoogle Scholar
Fausto, J. J., Sanchez, A., Jimenez, M. E., Esquar, I., and Ulloa, F. (1979) LBL Rep. 1197, 188220.Google Scholar
Fuis, G. S., Mooney, W. D., Healy, J. H., McMechan, G. A., and Lutter, W. J. (1982) U.S.G.S. Prof. Paper, 1254, 25-50.Google Scholar
Harker, A. (1932) Metamorphism, Methuen, London. 362 pp.Google Scholar
Helgeson, H. C. and Kirkham, D. H. (1974a) Am. J. Sci. 274, 1089-198.CrossRefGoogle Scholar
Helgeson, H. C. and Kirkham, D. H. (1974b) Ibid. 274, 1198-261.CrossRefGoogle Scholar
Helgeson, H. C. and Kirkham, D. H. (1976) Ibid. 276, 97-240.Google Scholar
Helgeson, H. C., Delany, J. M., Nesbitt, H. W., and Bird, D. K. (1978) Ibid. 278-A, 229 pp.Google Scholar
Helgeson, H. C., Kirkham, D. H., and Flowers, G. C. (1981) Ibid. 281, 1249-516.Google Scholar
Hewitt, D. A. (1973) Ibid. 273-A, 444-69.Google Scholar
Keskinen, M. (1981) Ibid. 281, 896-921.Google Scholar
Kretz, R., and Jen, L. S. (1978) Can. Mineral. 16, 533-7.Google Scholar
Liou, J. G., Kim, H. S., and Maruyama, S. (1983) J. Petrol. 24, 32142.CrossRefGoogle Scholar
McDowell, S. D., and Elders, W. A. (1980) Contrib. Mineral. Petrol. 74, 293-310.Google Scholar
Mueller, R. F. (1961) Geochim. Cosmochim. Acta, 25, 267-96.CrossRefGoogle Scholar
Muffler, L. P. J., and Doe, B. (1968) J. Sediment. Petrol. 38, 384-99.Google Scholar
Muffler, L. P. J. and White, D. E. (1969) Geol. Soc. Am. Bull. 80, 157-82.CrossRefGoogle Scholar
Rice, J. M. (1977) Am. J. Sci. 277, 1-24.CrossRefGoogle Scholar
Rice, J. M. and Ferry, (1982) Rev. Mineral. 10, 263-326.Google Scholar
Robinson, P. (1980) Rev. Mineral. 7, 419-94.Google Scholar
Robinson, P., Spear, F. S., Schumacher, J. C., Laird, J., Klein, C., Evans, B. W., and Doolan, B. L. (1982) Rev. Mineral. 9B, 1228.Google Scholar
Schiffman, P., Elders, W. A., Williams, A. E., McDowell, S. D., and Bird, D. K. (1984) Geology, 12, 12-15.2.0.CO;2>CrossRefGoogle Scholar
Scholle, P. A., and Schluger, P. R, (eds.) (1979) Aspects of Diagenesis, S.E.P.M. Spec. Publ. No. 26.CrossRefGoogle Scholar
Van de Kamp, P. C. (1973) Geol. Soc. Am. Bull. 84, 827-48.2.0.CO;2>CrossRefGoogle Scholar
Walther, J. V., and Helgeson, H. C. (1977) Am. J. Sci. 277, 1315-51.CrossRefGoogle Scholar