Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T18:19:46.973Z Has data issue: false hasContentIssue false

Gysinite-(La), PbLa(CO3)2(OH)⋅H2O, a new rare earth mineral of the ancylite group from the Saima alkaline complex, Liaoning Province, China

Published online by Cambridge University Press:  21 November 2022

Bin Wu*
Affiliation:
State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, China
Xiang-ping Gu
Affiliation:
School of Geosciences and Info-physics, Central South University, Changsha, Hunan 410083, China
Can Rao
Affiliation:
School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
Ru-cheng Wang
Affiliation:
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210033, China
Xing-qing Xing
Affiliation:
No. 241 Group Co., Ltd., Liaoning Geological Exploration and Mining Group, Fengcheng, Liaoning 118119, China
Jian-jun Wan
Affiliation:
State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, China
Fu-jun Zhong
Affiliation:
State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, China
Christophe Bonnetti
Affiliation:
State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, China
*
*Author for correspondence: Bin Wu, Email: wubin@ecut.edu.cn

Abstract

The new mineral, gysinite-(La), with the ideal formula PbLa(CO3)2(OH)⋅H2O, has been discovered in lujavrite from the Saima alkaline complex, Liaoning Province, China. It commonly occurs as subhedral to anhedral, granular and platy crystals of 5 to 50 μm in size, in interstices or enclosed in microcline, aegirine and nepheline. Associated minerals include nepheline, aegirine, microcline, natrolite, eudialyte, lamprophyllite, bastnäsite-(Ce), parasite-(Ce), ancylite-(La), ancylite-(Ce), bobtraillite, britholite-(Ce), thorite, calcite and galena. The crystallisation of gysinite-(La) may be related to the post-magmatic carbonation event. Gysinite-(La) crystals are generally transparent, colourless, or pale yellow, with a vitreous lustre and white streak. It is brittle with an uneven fracture, and the estimated Mohs hardness is 3½ to 4. The calculated density is 5.007 g/cm3. Optically, gysinite-(La) is biaxial (–), α= 1.832(2), β= 1.849(4), γ = 1.862(5) in white light and 2Vmeas = 81.6°. The empirical formula of gysinite-(La) is (La0.93Pb0.61Nd0.23Pr0.14Sr0.04Gd0.02Sm0.01Eu0.01Ca0.01)Σ2(CO3)2(OH)1.34⋅0.66H2O, which is calculated on the basis of general formula (REExM2+2–x)(CO3)2(OH)x⋅(2–x)H2O. The strongest eight lines of its powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 5.596 (21) (011), 4.349 (100) (110), 3.732 (68) (111), 2.984 (61) (121), 2.667 (21) (031), 2.363 (48) (131), 2.090 (29) (221) and 2.028 (21) (212). Gysinite-(La) is orthorhombic, in the space group Pmcn, and unit-cell parameters refined from single-crystal X-ray diffraction data are: a = 5.0655(2) Å, b = 8.5990(3) Å, c = 7.3901(4) Å, V = 321.90(2) Å3 and Z = 2. It is a new member of the ancylite group and isostructural with gysinite-(Nd), but with La and Pb dominant in the metal cation sites in the structure.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Peter Leverett

References

Bayliss, P. and Levinson, A.A. (1988) A system of nomenclature for rare-earth mineral species: revision and extension. American Mineralogist, 73, 422423.Google Scholar
Belovitskaya, Y.V., Pekov, I.V., Gobechiya, E.R. and Kabalov, Y.K. (2013) Refinement of the crystal structure of calcioancylite-(Ce) by the Rietveld method. Crystallography Reports, 58, 216219.CrossRefGoogle Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Bühn, B., Rankin, A.H., Radtke, M., Haller, M. and Knöchel, A. (1999) Burbankite, a (Sr,REE,Na,Ca)-carbonate in fluid inclusions from carbonatite-derived fluids: Identification and characterization using Lase Raman spectroscopy, SEM-EDX and synchrotron micro-XRF analysis. American Mineralogist, 84, 11171125.CrossRefGoogle Scholar
Buzgar, N. and Apopei, A.I. (2009) The Raman study of certain carbonates. Geologie, 55, 97112.Google Scholar
Carey, D.M. and Korenowski, G.M. (1998) Measurement of the Raman spectrum of liquid water. Journal of Chemical Physics, 108, 26692675.CrossRefGoogle Scholar
Chabot, B. and Sarp, H. (1985) Structure refinement of Gysinite La0.16Nd1.18Pb0.66(CO3)2(OH)1.34⋅0.66 H2O. Zeitschrift fur Kristallographie, 171, 155158.Google Scholar
Chakhmouradian, A.R. and Dahlgren, S. (2021) Primary inclusions of burbankite in carbonatites from the Fen complex, southern Norway. Mineralogy and Petrology, 115, 161171.CrossRefGoogle Scholar
Dal Negro, A., Rossi, G. and Tazzoli, V. (1975) The crystal structure of ancylite, (RE)x(Ca,Sr)2–x(CO3)2(OH)x·(2–x)H2O. American Mineralogist, 60, 280284.Google Scholar
De Villiers, J.P.R. (1971) Crystal structures of aragonite, strontianite, and witherite. American Mineralogist, 56, 758767.Google Scholar
Frost, R.L. and Dickfos, M.J. (2007) Raman spectroscopy of halogen-containing carbonates. Journal of Raman Spectroscopy, 38, 15161522.CrossRefGoogle Scholar
Gunasekaran, S., Anbalagan, G. and Pandi, S. (2006) Raman and infrared spectra of carbonates of calcite structure. Journal of Raman Spectroscopy, 37, 892899.CrossRefGoogle Scholar
Hatert, F. and Burke, E.A.J. (2008) The IMA-CNMNC dominant-constituent rule revisited and extended. The Canadian Mineralogist, 46, 717728.CrossRefGoogle Scholar
Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.CrossRefGoogle Scholar
Levinson, A. (1966) A system of nomenclature for rare-earth minerals. American Mineralogist, 51, 152.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship: part IV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Miyawaki, R., Matsubara, S., Yokoyama, K., Takeuchi, K., Nakai, I. and Terada, Y. (2000) Kozoite-(Nd), Nd(CO3)(OH), a new mineral in an alkali olivine basalt from Hizen-cho, Saga Prefecture, Japan. American Mineralogist, 85, 10761081.CrossRefGoogle Scholar
Miyawaki, R., Matsubara, S., Yokoyama, K., Iwano, S., Hamasaki, K. and Yukinori, I. (2003) Kozoite-(La), La(CO3)(OH), a new mineral from Mitsukoshi, Hizen-cho, Saga Prefecture, Japan. Journal of Mineralogical and Petrological Sciences, 98, 137141.CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.CrossRefGoogle Scholar
Negro, A. and Ungaretti, L. (1971) Refinement of the crystal structure of aragonite. American Mineralogist, 56, 768772.Google Scholar
Olmi, F. and Sabelli, C. (1991) Gysinite-(Nd), a mineral new to Italy, from Sa Duchessa, Sardinia. Neues Jahrbuch für Mineralgie-Monatshefte, 4, 185191.Google Scholar
Orlandi, P., Pasero, M. and Vezzalini, G. (1990) Calcioancylite-(Nd), a new REE-carbonate from Baveno, Italy. European Journal of Mineralogy, 2, 413418.CrossRefGoogle Scholar
Peng, Q.R., Cao, R.L., Zou, Z.R., Zhang, L.J., Yin, S.S. and Ding, K.S. (1962) Gugiaite, Ca2BeSi2O7, a new beryllium mineral belonging to the melilite group. Acta Geologica Sinica, 42, 259274 [in Chinese with English abstract].Google Scholar
Petersen, O.V., Niedermayr, G., Gault, R.A., Brandsttter, F. and Giester, G. (2001) Ancylite-(La) from the Ilímaussaq alkaline complex, South Greenland: Contribution to the mineralogy of Ilímaussaq, no. 106. Neues Jahrbuch für Mineralogie-Monatshefte, 11, 493504.Google Scholar
Sarp, H. and Bertrand, J. (1985) Gysinite, Pb(Nd,La)(CO3)2(OH)⋅H2O, a new lead, rare-earth carbonate from Shinkolobwe, Shaba, Zaïre and its relationship to ancylite. American Mineralogist, 70, 13141317.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Sheldrick, G.M. (2015a) SHELXT – Integrated space-group and crystal structure determination. Acta Crystallographica, A71, 38.Google Scholar
Sheldrick, G.M. (2015b) Crystal structure refinement with SHELX. Acta Crystallographica, C71, 38.Google Scholar
Shen, G.F., Xu, J.S., Yao, P. and Li, G.W. (2017) Fengchengite: a new species with the Na-poor but vacancy-dominant N(5) site in the eudialyte group. Acta Mineralogica Sinica, 37, 140151 [in Chinese with English abstract].Google Scholar
Wang, Y.J., Gu, X.P., Dong, G.C., Hou, Z.Q., Yang, Z.S., Fan, G., Wang, Y.F., Tang, C., Cheng, Y.H. and Qu, K. (2022) Calcioancylite-(La), IMA 2021-090. CNMNC Newsletter 65. Mineralogical Magazine, 86, https://doi.org/10.1180/mgm.2022.14Google Scholar
Wu, F.Y., Yang, Y.H., Marks, M.A.W., Liu, Z.C., Zhou, Q., Ge, W.C., Yang, J.S., Zhao, Z.F., Mitchell, R.H. and Markl, G. (2010) In situ U–Pb, Sr, Nd and Hf isotopic analysis of eudialyte by LA-(MC)-ICP-MS. Chemical Geology, 273, 834.CrossRefGoogle Scholar
Wu, B., Wang, R.C., Yang, J.H., Wu, F.Y., Zhang, W.L., Gu, X.P. and Zhang, A.C. (2015) Wadeite (K2ZrSi3O9), an alkali-zirconosilicate from the Saima agpaitic rocks in northeastern China: its origin and response to multi-stage activities of alkaline fluids. Lithos, 224–225, 126142.CrossRefGoogle Scholar
Wu, B., Wang, R.C., Yang, J.H., Wu, F.Y., Zhang, W.L., Gu, X.P. and Zhang, A.C. (2016) Zr and REE mineralization in sodic lujavrite from the Saima alkaline complex, northeastern China: A mineralogical study and comparison with potassic rocks. Lithos, 262, 232246.CrossRefGoogle Scholar
Wu, B., Wen, H.J., Bonnetti, C., Wang, R.C., Yang, J.H. and Wu, F.Y. (2019) Rinkite-(Ce) in the nepheline syenite pegmatite from the Saima alkaline complex, northeastern China: its occurrence, alteration, and implications for REE mineralization. The Canadian Mineralogist, 57, 903924.CrossRefGoogle Scholar
Wu, B., Gu, X.P., Rao, C., Wang, R.C., Zhong, F.J. and Wan, J.J. (2022a) Fluorsigaiite, IMA 2021-087a. CNMNC Newsletter 67; Mineralogical Magazine, 86, https://doi.org/10.1180/mgm.2022.56Google Scholar
Wu, B., Gu, X.P., Rao, C., Wang, R.C., Xing, X.Q., Wan, J.J. and Zhong, F.J. (2022b) Gysinite-(La), IMA 2022-008. CNMNC Newsletter 67; Mineralogical Magazine, 86, https://doi.org/10.1180/mgm.2022.56Google Scholar
Yang, Z.M., Giester, G., Ding, K.S. and Tillmanns, E. (2012) Hezuolinite, (Sr,REE)4Zr(Ti,Fe3+,Fe2+)2Ti2O8(Si2O7)2, a new mineral species of the chevkinite group from Saima alkaline complex, Liaoning Province, NE China. European Journal of Mineralogy, 24, 189196.CrossRefGoogle Scholar
Zhu, Y.S., Yang, J.H., Sun, J.F., Zhang, J.H. and Wu, F.Y. (2016) Petrogenesis of coeval silica-saturated and silica-undersaturated alkaline rocks: Mineralogical and geochemical evidence from the Saima alkaline complex, NE China. Journal of Asian Earth Sciences, 117, 184207.CrossRefGoogle Scholar
Zhu, Y.S., Yang, J.H., Sun, J.F. and Wang, H. (2017) Zircon Hf-O isotope evidence for recycled oceanic and continental crust in the sources of alkaline rocks. Geology, 45, 407410.CrossRefGoogle Scholar
Supplementary material: PDF

Wu et al. supplementary material

Wu et al. supplementary material 1

Download Wu et al. supplementary material(PDF)
PDF 102.6 KB
Supplementary material: File

Wu et al. supplementary material

Wu et al. supplementary material 2

Download Wu et al. supplementary material(File)
File 101.1 KB