Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-25T05:08:53.168Z Has data issue: false hasContentIssue false

Glikinite, Zn3O(SO4)2, a new anhydrous zinc oxysulfate mineral structurally based on OZn4 tetrahedra.

Published online by Cambridge University Press:  30 April 2020

Evgeny V. Nazarchuk
Affiliation:
Department of Crystallography, St. Petersburg State University, University Embankment 7/9, 199034St. Petersburg, Russia
Oleg I. Siidra*
Affiliation:
Department of Crystallography, St. Petersburg State University, University Embankment 7/9, 199034St. Petersburg, Russia Kola Science Center, Russian Academy of Sciences, Apatity, Murmansk Region, 184200, Russia
Diana O. Nekrasova
Affiliation:
Department of Crystallography, St. Petersburg State University, University Embankment 7/9, 199034St. Petersburg, Russia
Vladimir V. Shilovskikh
Affiliation:
Geomodel Centre, St. Petersburg State University, University Embankment 7/9, 199034St. Petersburg, Russia
Artem S. Borisov
Affiliation:
Department of Crystallography, St. Petersburg State University, University Embankment 7/9, 199034St. Petersburg, Russia
Evgeniya Y. Avdontseva
Affiliation:
Department of Crystallography, St. Petersburg State University, University Embankment 7/9, 199034St. Petersburg, Russia
*
*Author for correspondence: Oleg I. Siidra, Email: o.siidra@spbu.ru

Abstract

A new mineral glikinite, ideally Zn3O(SO4)2, was found in high-temperature exhalative mineral assemblages in the Arsenatnaya fumarole, Second scoria cone of the Great Tolbachik Fissure Eruption (1975–1976), Tolbachik volcano, Kamchatka Peninsula, Russia. Glikinite is associated closely with langbeinite, lammerite-β, bradaczekite, euchlorine, anhydrite, chalcocyanite and tenorite. It is monoclinic, P21/m, a = 7.298(18), b = 6.588(11), c = 7.840(12) Å, β = 117.15(3)°, V = 335.4(11) Å3 and R1 = 0.046. The eight strongest lines of the powder X-ray diffraction pattern [d in Å (I) (hkl)] are: 6.969(56)(00$\bar{1}$), 3.942(52)(101), 3.483(100)(00$\bar{2}$), 3.294(49)(020), 2.936(43)(120), 2.534(63)(201), 2.501(63)(20$\bar{3}$) and 2.395(86)(02$\bar{2}$). The chemical composition determined by electron-microprobe analysis is (wt.%): ZnO 42.47, CuO 19.50, SO3 39.96, total 101.93. The empirical formula calculated on the basis of O = 9 apfu is Zn2.07Cu0.97S1.98O9 and the simplified formula is Zn3O(SO4)2. Glikinite is a Zn,Cu analogue of synthetic Zn3O(SO4)2. The crystal structure of glikinite is based on OZn4 tetrahedra sharing common corners, thus forming [Zn3O]4+ chains. Sulfate groups interconnect [Zn3O]4+ chains into a 3D framework.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Ian T. Graham

References

Bald, L. and Grühn, R. (1981) Die Kristallstruktur von einem Sulfat-reichen Oxidsulfat des Zinks. Naturwissenschaften, 68, 3939.CrossRefGoogle Scholar
Berlepsch, P., Armbruster, T., Brugger, J., Bykova, E.Y. and Kartashov, P.M. (1999) The crystal structure of vergasovaite Cu3O((Mo,S)O4SO4), and its relation to synthetic Cu3O(MoO4)2. European Journal of Mineralogy, 11, 101110.CrossRefGoogle Scholar
Bernauer, F. (1936) Primäre Teufenunterschiede, Verwitterungs- und Anreicherungsvorgänge am Krater von Vulcano. Fortschritte der Mineralogie, 20, 31p.Google Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Proceedings of the Russian Mineralogical Society, 146, 104107.Google Scholar
Bruker-AXS (2014) APEX2. Version 2014.11-0. Madison, Wisconsin, USA.Google Scholar
Edmonds, M., Mather, T.A. and Liu, E.J. (2018) A distinct metal fingerprint in arc volcanic emissions. Nature Geoscience, 11, 790794.CrossRefGoogle Scholar
Fedotov, S.A. and Markhinin, Y.K. (editors) (1983) The Great Tolbachik Fissure Eruption. Cambridge University Press, New York.Google Scholar
Glikin, A.E. (2009) Polymineral-metasomatic crystallogenesis. Springer, Dordrecht, 312 p.Google Scholar
Krivovichev, S.V., Mentré, O., Siidra, O.I., Colmont, M. and Filatov, S.K. (2013) Anion-centered tetrahedra in inorganic compounds. Chemical Reviews, 113, 64596535.CrossRefGoogle ScholarPubMed
Nazarchuk, E.V., Siidra, O.I., Nekrasova, D.O., Borisov, A.S. and Shilovskikh, V.V. (2019) Glikinite, IMA 2018-119. CNMNC Newsletter No. 47, February 2019, page 145; Mineralogical Magazine, 83, 143147.Google Scholar
Pekov, I.V., Koshlyakova, N.N., Zubkova, N.V., Lykova, I.S., Britvin, S.N., Yapaskurt, V.O., Agakhanov, A.A., Shchipalkina, N.V., Turchkova, A.G. and Sidorov, E.G. (2018a) Fumarolic arsenates – a special type of arsenic mineralization. European Journal of Mineralogy, 30, 305322.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V. and Pushcharovsky, D. Yu (2018b) Copper minerals from volcanic exhalations – a unique family of natural compounds: crystal-chemical review. Acta Crystallographica, B74, 502518.Google Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Siidra, O.I., Nazarchuk, E.V., Zaitsev, A.N., Lukina, E.A., Avdontseva, E.Y., Vergasova, L.P., Vlasenko, N.S., Filatov, S.K., Turner, R. and Karpov, G.A. (2017) Copper oxosulphates from fumaroles of Tolbachik Vulcano: puninite, Na2Cu3O(SO4)3 – a new mineral species and structure refinements of kamchatkite and alumoklyuchevskite. European Journal of Mineralogy, 29, 499510.CrossRefGoogle Scholar
Siidra, O.I., Nazarchuk, E.V., Agakhanov, A.A., Lukina, E.A., Zaitsev, A.N., Turner, R., Filatov, S.K., Pekov, I.V., Karpov, G.A. and Yapaskurt, V.O. (2018a) Hermannjahnite, CuZn(SO4)2, a new mineral with chalcocyanite derivative structure from the Naboko scoria cone of the 2012–2013 fissure eruption at Tolbachik volcano, Kamchatka, Russia. Mineralogy and Petrology, 112, 123134.CrossRefGoogle Scholar
Siidra, O.I., Nazarchuk, E.V., Lukina, E.A., Zaitsev, A.N. and Shilovskikh, V.V. (2018b) Belousovite, KZn(SO4)Cl, a new sulphate mineral from the Tolbachik volcano with apophyllite sheet-topology. Mineralogical Magazine, 82, 10791088.Google Scholar
Siidra, O.I., Nazarchuk, E.V, Zaitsev, A.N. and Shilovskikh, V.V. (2020) Majzlanite, K2Na(ZnNa)Ca(SO4)4, a new anhydrous sulfate mineral with complex cation substitutions from Tolbachik volcano. Mineralogical Magazine, 84, 153158.CrossRefGoogle Scholar
Siidra, O.I., Borisov, A.S., Lukina, E.A., Depmeier, W., Platonova, N.V., Colmont, M. and Nekrasova, D.O. (2019) Reversible hydration/dehydration and thermal expansion of euchlorine, ideally KNaCu3O(SO4)3. Physics and Chemistry of Minerals, 4, 403416.CrossRefGoogle Scholar
Stoiber, R.E. and Rose, W.I. Jr. (1974) Fumarole incrustations at active Central American volcanoes. Geochimica et Cosmochimica Acta, 38, 495516.CrossRefGoogle Scholar
Thomas, E., Varekamp, J.C. and Buseck, P.R. (1982) Zinc enrichment in the phreatic ashes of Mt. St. Helens. Journal of Volcanology and Geothermal Research, 12, 339350.Google Scholar
Vergasova, L.P. and Filatov, S.K. (2012) New mineral species in products of fumarole activity of the Great Tolbachik Fissure Eruption. Journal of Volcanology and Seismology, 6, 281289.CrossRefGoogle Scholar
Wildner, M. and Giester, G. (1988) Crystal structure refinements of synthetic chalcocyanite (CuSO4) and zincosite (ZnSO4). Mineralogy and Petrology, 39, 201209.CrossRefGoogle Scholar
Supplementary material: File

Nazarchuk et al. supplementary material

Nazarchuk et al. supplementary material

Download Nazarchuk et al. supplementary material(File)
File 55.3 KB