Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T01:10:11.299Z Has data issue: false hasContentIssue false

Fluorophlogopite-bearing and carbonate metamorphosed xenoliths from theCampanian Ignimbrite (Fiano, southern Italy): crystal chemical, geochemical and volcanological insights

Published online by Cambridge University Press:  02 January 2018

M. Lacalamita
Affiliation:
Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, via Orabona 4, I-70125 Bari, Italy
G. Balassone
Affiliation:
Dipartimento di Scienze della Terra dell’Ambiente e delle Risorse, Università “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Napoli, Italy
E. Schingaro*
Affiliation:
Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, via Orabona 4, I-70125 Bari, Italy
E. Mesto
Affiliation:
Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, via Orabona 4, I-70125 Bari, Italy
A. Mormone
Affiliation:
Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, via Diocleziano 328, I-80124 Napoli, Italy
M. Piochi
Affiliation:
Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, via Diocleziano 328, I-80124 Napoli, Italy
G. Ventruti
Affiliation:
Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, via Orabona 4, I-70125 Bari, Italy
M. Joachimski
Affiliation:
GeoZentrum Nordbayern, Universität Erlangen-Nürnberg, Erlangen 91054, Germany

Abstract

Fluorine-, boron- and magnesium-rich metamorphosed xenoliths occur in the Campanian Ignimbrite deposits at Fiano (southern Italy), at ∼50 km northeast of the sourced volcanic area. These rocks originated from Mesozoic limestones of the Campanian Apennines, embedded in a fluid flow. The Fiano xenoliths studied consist of ten fluorophlogopite-bearing calc-silicate rocks and five carbonate xenoliths, characterized by combining mineralogical analyses with whole-rock and stable isotope data. The micaceous xenoliths are composed of abundant idiomorphic fluorophlogopite, widespread fluorite, F-rich chondrodite, fluoborite, diopside, Fe(Mg)-oxides, calcite, humite, K-bearing fluoro-richterite and grossular. Of the five mica-free xenoliths, two are calcite marbles, containing subordinate fluorite and hematite, and three are weakly metamorphosed carbonates, composed only of calcite. The crystal structure and composition of fluorophlogopite approach that of the end-member. The Fiano xenoliths are enriched in trace elements with respect to the primary limestones. Comparisons between the rare-earth element (REE) patterns of the Fiano xenoliths and those of both Campanian Ignimbrite and Somma-Vesuvius marble and carbonate xenoliths showthat the Fiano pattern overlaps that of Somma-Vesuvius marble and carbonate xenoliths, and reproduces the trend of Campanian Ignimbrite rocks. Values of δ13C and δ18O depict the same trend of depletion in the heavy isotopes observed in the Somma-Vesuvius nodules, and is related to thermometamorphism. Trace-element distribution, paragenesis, stable isotope geochemistry and data modelling point to infiltration of steam enriched in F, B,Mg and As into carbonate rocks at a temperature of ∼300–450°C during the emplacement of the Campanian Ignimbrite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arienzo, I., Heumann, A., Wörner, G., Civetta, L. and Orsi, L. (2011) Processes and timescales of magma evolution prior to the Campanian Ignimbrite eruption (Campi Flegrei, Italy). Earth and Planetary Science Letters, 306 (3–4), 217228.CrossRefGoogle Scholar
Bachechi, F., Federico, M. and Fornaseri, M. (1966) La ludwigite e i minerali che l’accompagnano nelle geodi delle “pozzolane nere” di Corcolle (Tivoli, Colli Albani). Periodico di Mineralogia, 35, 9751022.Google Scholar
Balassone, G., Franco, E., Mattia, C.A., Petti, C. and Puliti, R. (2002) Re-examination of fluosiderite, an unknown mineral from southern Italy: equal to fluorine-rich chondrodite. European Journal of Mineralogy, 14, 151155.CrossRefGoogle Scholar
Balassone, G., Scordari, F., Lacalamita, M., Schingaro, E., Mormone, A., Piochi, M., Petti, C. and Mondillo, N. (2013) Trioctahedral micas in xenolithic ejecta from recent volcanism of the Somma-Vesuvius (Italy): Crystal chemistry and genetic inferences. Lithos, 160–161, 8497.Google Scholar
Barberi, F. and Leoni, L. (1980) Metamorphic carbonate ejecta from Vesuvius Plinian eruptions: Evidence of the occurrence of shallow magma chambers. Bullettin of Volcanology, 43, 107120.CrossRefGoogle Scholar
Betteridge, P.W., Carruthers, J.R., Cooper, R.I., Prout, K. and Watkin, D.J. (2003) Crystals version 12: software for guided crystal structure analysis. Journal of Applied Crystallography, 36, 1487.CrossRefGoogle Scholar
Bottinga, Y. (1968) Calculation of fractionation factors for carbon and oxygen isotopic exchange in the system calcite-carbon dioxide-water. The Journal of Physical Chemistry, 72, 800808.CrossRefGoogle Scholar
Bowman, J.R. (1998) Stable-isotope systematics of skarns. Pp. 99145 in: Mineralized intrusion-related skarn systems (Lentz, D.R., editor). Short Course Series, 26. Mineralogical Association of Canada, Ottawa.Google Scholar
Brisi, C. and Eitel, W. (1957) Identity of nocerite and fluoborite. American Mineralogist, 42 (3–4), 288293.Google Scholar
Bruker (2007). SAINT, Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2009). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Cámara, F. and Ottolini, L. (2000) New data on the crystalchemistry of fluoborite by means of SREF, SIMS, and EMP analysis. American Mineralogist, 85, 103107.CrossRefGoogle Scholar
Caponera, I., Fiori, S. and Pucci, R. (2003) Fluoborite, piombo nativo, richterite ed altri interessanti ritrovamenti nei Colli Albani. Il Cercapietre. Notiziario del Gruppo Mineralogico Romano, 1–2, 313.Google Scholar
Cappelletti, P., Cerri, G., Colella, A., de’ Gennaro, M., Langella, A., Perrotta, A. and Scarpati, C. (2003) Posteruptive processes in the Campanian Ignimbrite. Mineralogy and Petrology, 79, 7997.CrossRefGoogle Scholar
Carati, M. (1987) I minerali degli inclusi metamorfosati nel tufo grigio campano. Notiziario del Gruppo Mineralogico Geologico Napoletano, 18, 613.Google Scholar
Cesare, B., Cruciani, G. and Russo, U. (2003) Hydrogen deficiency in Ti-rich biotite from anatectic metapelites (El Joyazo, SE Spain): Crystal-chemical aspects and implications for high-temperature petrogenesis. American Mineralogist, 88, 583595.CrossRefGoogle Scholar
Civetta, L., Orsi, G., Pappalardo, L., Fisher, R.V., Heiken, G. and Ort, M. (1997) Geochemical zoning, mingling, eruptive dynamics and depositional processes – the Campanian Ignimbrite, Campi Flegrei caldera, Italy. Journal of Volcanology and Geothermal Research, 75, 183219.CrossRefGoogle Scholar
Costa, A., Folch, A., Macedonio, G., Giaccio, B., Isaia, R. and Smith, V.C. (2012) Quantifying volcanic ash dispersal and impact of the Campanian Ignimbrite super-eruption. Geophysical Research Letters, 39, 15.CrossRefGoogle Scholar
de Gennaro, M., Calcaterra, D. and Langella, A. (2013) Le pietre storiche della Campania – dall’oblio alla riscoperta. Lucianoeditore, Napoli, Italy.Google Scholar
Della Ventura, G., Parodi, G.C. and Maras, A. (1992) Potassium-fluor-richterite, a new amphibole form San Vito, Monte Somma, Campania, Italy. Rendiconti dell’Accademia dei Lincei, Classe di Scienze Fisiche, Maematiche e Naturali, 9, 239245.CrossRefGoogle Scholar
Del Moro, A., Fulignati, P., Marianelli, P. and Sbrana, A. (2001) Magma contamination by direct wall rock interaction, constraints from xenoliths from the walls of a carbonate-hosted magma chamber (Vesuvius 1944 eruption). Journal of Volcanology and Geothermal Research, 112, 1524.CrossRefGoogle Scholar
Droop, G.T.R. (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analysis, using stoichiometric criteria. Mineralogical Magazine, 51, 431437.CrossRefGoogle Scholar
Fedele, F.G., Giaccio, B., Isaia, R. and Orsi, G. (2002) Ecosystem impact of the Campanian Ignimbrite eruption in Late Pleistocene Europe. Quaternary Research, 57, 420424.CrossRefGoogle Scholar
Fedele, L., Tarzia, M., Belkin, H.E., De Vivo, B., Lima, A. and Lowenstern, J.B. (2006) Magmatic-hydrothermal fluid interaction and mineralization in alkali-syenite nodules from the Breccia Museo pyroclastic deposit, Naples, Italy. Pp. 125161 in: Volcanism in Campania Plain: Vesuvius, Campi Flegrei and Ignimbrites (De Vivo, B., editor). Developments in Volcanology, 9. Elsevier.CrossRefGoogle Scholar
Fedele, L., Scarpati, C., Marvin, L., Melluso, L., Morra, V. Perrotta, A. and Ricci, G. (2008) The Breccia Museo formation, Campi Flegrei, southern Italy: geochronology, chemostratigraphy and relationship with the Campanian Ignimbrite eruption. Bulletin of Volcanology, 10, 11891219.CrossRefGoogle Scholar
Fisher, R. V., Orsi, G., Ort, M. and Heiken, G. (1993) Mobility of a large-volume pyroclastic flow-emplacement of the Campanian ignimbrite, Italy. Journal of Volcanology and Geothermal Research, 56, 205220.CrossRefGoogle Scholar
Flamini, A., Graziani, G. and Pagliuca, G. (1979) Synthesis of the fluorine end member of the fluoborite series. American Mineralogist, 64, 229231.Google Scholar
Fulignati, P., Panichi, C., Sbrana, A., Caliro, S., Gioncada, A. and Del Moro, A. (2005) Skarn formation at the walls of the 79AD magma chamber of Vesuvius (Italy): Mineralogical and isotopic constraints. Neues Jahrbuch für Mineralogie Abhandlungen, 181, 5366.CrossRefGoogle Scholar
Giaccio, B., Isaia, R., Fedele, F.G., Di Canzio, E., Hoffecker, J., Ronchitelli, A., Sinitsyn, A.A., Anikovich, M., Lisitsyn, S.N. and Popov, V.V. (2008) The Campanian Ignimbrite and Codola tephra layers: Two temporal/stratigraphic markers for the Early Upper Palaeolithic in southern Italy and eastern Europe. Journal of Volcanology and Geothermal Research, 177, 208226.CrossRefGoogle Scholar
Gianfagna, A., Scordari, F., Mazziotti-Tagliani, S., Ventruti, G. and Ottolini, L. (2007) Fluorophlogopite from Biancavilla (Mt. Etna, Sicily, Italy): Crystal structure and crystal chemistry of a new F-dominant analog of phlogopite. American Mineralogist, 92, 16011609.CrossRefGoogle Scholar
Gilg, H.A., Lima, A., Somma, R., Belkin, H.E., De Vivo, B. and Ayuso, R.A. (2001) Isotope geochemistry and fluid inclusion study of skarns from Vesuvius. Mineralogy and Petrology, 73, 145176.CrossRefGoogle Scholar
Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacer, J.C., Welch, M.D. (2012) Nomenclature of the amphibole supergroup. American Mineralogist, 97, 20312048.CrossRefGoogle Scholar
Hazen, R.M. and Burnham, C.W. (1973) The crystal structures of one-layer phlogopite and annite. American Mineralogist, 58, 889900.Google Scholar
Hazen, R.M., Finger, L.W. and Velde, D. (1981) Crystal structure of a silica- and alkali-rich trioctahedral mica. American Mineralogist, 66, 586591.Google Scholar
Heinrich, W. (1994) Potassium-fluor-richterite in metacherts from the Bufa del Diente contact-metamorphic aureole, NE-Mexico. Mineralogy and Petrology, 50, 259270.CrossRefGoogle Scholar
Iannace, A. (1991) Ambienti deposizionali e processi diagenetici in successioni di piattaforma carbonatica del Trias Superiore nei Monti Lattari e Picentini (Salerno). PhD Thesis, Università di Napoli “Federico II”, Naples, Italy.Google Scholar
Joswig, V.W. (1972) Neutronenbeugungsmessungen an einem 1M-Phlogopit. Neues Jahrbuch für Mineralogie, Monatshefte, 111.Google Scholar
Langella, A., Bish, D.L., Cappelletti, P., Cerri, G., Colella, A., de Gennaro, R., Graziano, S.F., Perrotta, A., Scarpati, C. and de Gennaro, M. (2013) New insights into the mineralogical facies distribution of Campanian Ignimbrite, a relevant Italian industrial material. Applied Clay Science, 72, 5573.CrossRefGoogle Scholar
Leeman, W.P., Sisson, V.B. and Reid, M.R. (1992) Boron geochemistry of the lower crust: evidence from granulite terranes and deep crustal xenoliths. Geochimica et Cosmochimica Acta, 56, 775788.CrossRefGoogle Scholar
Marianelli, P., Sbrana, A. and Proto, M. (2006) Magma chamber of the Campi Flegrei supervolcano at the time of eruption of the Campanian Ignimbrite. Geology, 34, 937940.CrossRefGoogle Scholar
Marincea, Ş. (2000) Fluoborite in magnesian skarns from Baita Bihor (Bihor Massif, Apuseni Mountains, Romania). Neues Jahrbuch für Mineralogie, Monatshefte, 8, 357371.Google Scholar
Masi, U. and Turi, B. (1972) Frazionamento isotopico del carbonio e dell’ossigeno negli inclusi calcarei metamorfosati del “Tufo grigio campano” Auct. di Fiano (Salerno). Periodico di Mineralogia, 41, 291310.Google Scholar
McCauley, J.W., Newnham, R.E. and Gibbs, G.V. (1973) Crystal structure analysis of synthetic fluorophlogopite. American Mineralogist, 58, 249254.Google Scholar
McDonough, W.F. and Sun, S.S. (1995) The composition of the Earth. Chemical Geology, 120, 223253.CrossRefGoogle Scholar
Ort, M.H., Rosi, M. and Anderson, C.D. (1999) Correlation of deposits and vent locations of the proximal Campanian Ignimbrite deposits, Campi Flegrei, Italy, based on natural remanent magnetization and anisotropy of magnetic susceptibility characteristics. Journal of Volcanology and Geothermal Research, 91, 167178.CrossRefGoogle Scholar
Ottolini, L., Schingaro, E. and Scordari, F. (2012) Ceramics: Contribution of Secondary Ion Mass Spectrometry (SIMS) to the Study of Crystal Chemistry of Mica Minerals. Pp. 10171060 in: Mass Spectrometry Handbook. Wiley Series on Pharmaceutical Science and Bioteechnology: Practices, Applications, and Methods, 43. J. Wiley & Sons, Hoboken, NJ, USA.CrossRefGoogle Scholar
Pappalardo, L., Ottolini, L. and Mastrolorenzo, G. (2008) The Campanian Ignimbrite (southern Italy) geochemical zoning: insight on the generation of a supereruption from catastrophic differentiation and fast withdrawal. Contribution to Mineralogy and Petrology, 156, 126.CrossRefGoogle Scholar
Piochi, M., Bruno, P.P. and De Astis, G. (2005) Relative roles of rifting tectonics and magma ascent processes: inferences from geophysical, structural, volcanological, and geochemical data of the Neapolitan volcanic region (southern Italy). Geochemistry, Geophysics, Geosystems, 6, 125.CrossRefGoogle Scholar
Piochi, M., Polacci, M., De Astis, G., Zanetti, A., Mangiacapra, A., Vannucci, R. and Giordano, D. (2008) Texture and composition of pumices and scoriae from the Campi Flegrei caldera (Italy): Implications on the dynamics of explosive eruptions. Geochemistry Geophysics Geosystems, 9, 125.CrossRefGoogle Scholar
Piochi, M., Mormone, A., Balassone, G., Strauss, H., Troise, C. and De Natale, G. (2015) Native sulfur, sulfates and sulfides from the active Campi Flegrei volcano (southern Italy): Genetic environments and degassing dynamics revealed by mineralogy and isotope geochemistry. Journal of Volcanology and Geothermal Research, 304, 180193.CrossRefGoogle Scholar
Polacci, M., Pioli, L. and Rosi, M. (2003) The Plinian phase of the Campanian Ignimbrite eruption (Phlegrean Fields, Italy): evidence from density measurements and textural characterization of pumice. Bulletin of Volcanology, 65, 418432.CrossRefGoogle Scholar
Redhammer, G.J. and Roth, G. (2002) Single-crystal structure refinements and crystal chemistry of synthetic trioctahedral micas KM3(Al3+, Si4+)4O10(OH)2, where M= Ni2+, Mg2+, Co2+, Fe2+, or Al3+ . American Mineralogist, 87, 14641476.CrossRefGoogle Scholar
Rosen, O., Desmons, J. and Fettes, D. (2007) A systematic nomenclature for metamorphic rocks. 7. Metacarbonates and related rocks. Recommendations by the IUGS Subcommission on the systematics of metamorphic rocks. SCMR website (http://www.bgs.ac.uk/SCMR).Google Scholar
Russell, R.L. and Guggenheim, S. (1999) Crystal structures of near-end-member phlogopite at high temperatures and heat-treated Fe-rich phlogopite; the influence of the O, OH, F site. The Canadian Mineralogist, 37, 711720.Google Scholar
Scacchi, A. (1888) La regione vulcanica fluorifera della Campania. Atti della Reale Accademia delle Scienze Fisiche e Matematiche di Napoli, 2, 1108.Google Scholar
Scacchi, A. (1890) La regione vulcanica fluorifera della Campania. Memorie Regio Comitato Geologico Italiano, Estratti, IV(I), 1–48.Google Scholar
Schingaro, E., Lacalamita, M., Scordari, F., Brigatti, M.F. and Pedrazzi, G., (2011) Crystal chemistry of Ti-rich fluorophlogopite from Presidente Olegario, Alto Paranaíba igneous province, Brazil. American Mineralogist, 96, 732743.CrossRefGoogle Scholar
Schingaro, E., Lacalamita, M., Scordari, F. and Mesto, E. (2013) 3T-phlogopite from Kasenyi kamafugite (SW Uganda): EPMA, XPS, FTIR, and SCXRD study. American Mineralogist, 98, 709717.CrossRefGoogle Scholar
Schingaro, E., Kullerud, K., Lacalamita, M., Mesto, E., Scordari, F., Zozulya, D., Erambert, M. and Ravna, E. J. K. (2014) Yangzhumingite and phlogopite from the Kvaløya lamproite (North Norway): Structure, composition and origin. Lithos, 210–211, 113.CrossRefGoogle Scholar
Scordari, F., Schingaro, E., Ventruti, G., Nicotra, E., Viccaro, M. and Mazziotti Tagliani, S. (2013) Fluorophlogopite from Piano delle Concazze (Mt. Etna, Italy): crystal chemistry and implications for the crystallization conditions. American Mineralogist, 98, 10171025.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogaphica, A32, 751767.CrossRefGoogle Scholar
Signorelli, S., Vaggelli, G., Romano, C. and Carroll, M.R. (2001) Volatile element zonation in Campanian Ignimbrite magmas (Phlegrean Fields, Italy): evidence from the study of glass inclusions and matrix glasses. Contribution to Mineralogy and Petrology, 140, 543553.CrossRefGoogle Scholar
Takeda, H. and Donnay, J.D.H. (1966) Trioctahedral One- Layer Micas. III. Crystal Structure of a Synthetic Lithium Fluormica. Acta Crystallographica, A20, 638646.CrossRefGoogle Scholar
Takeda, H. and Morosin, B. (1975) Comparison of observed and predicted structural parameters of mica at high temperature. Acta Crystallographica, 3B1, 24442452.CrossRefGoogle Scholar
Taylor, H.P., Giannetti, B and Turi, B (1979) Oxygen isotope geochemistry of the potassic igneous rocks from the Roccamonfina volcano, Roman comagmatic region, Italy. Earth and Planetary Science Letters, 46, 81106.CrossRefGoogle Scholar
Tell, I. (1974) Hydrothermal Studies on Fluorine Metamorphic Reactions in Siliceous Dolomite. Contribution to Mineralogy and Petrology, 43, 99110.CrossRefGoogle Scholar
Tomlinson, E.L., Arienzo, I., Civetta, L., Wulf, S., Smith, V.C., Hardiman, M., Lane, C.S., Carandente, A., Orsi, G., Rosi, M., Müller, W. and Menzies, M.A. (2012) Geochemistry of the Phlegraean Fields (Italy) proximal sources for major Mediterranean tephras: Implications for the dispersal of Plinian and coignimbritic components of explosive eruptions. Geochimica et Cosmochimica Acta, 93, 102128.CrossRefGoogle Scholar
Tonarini, S., Leeman, W.P., Civetta, L., D’Antonio, M., Ferrara, G. and Necco, A. (2004) B/Nb and δ11B systematics in the Phlegrean Volcanic District, Italy. Journal of Volcanology and Geothermal Research, 133, 123139.CrossRefGoogle Scholar
Turi, B. (1969) Carbon and oxygen isotopic composition of carbonates in limestones blocks and related geodes from the “Black Pozzolans” formation of the Alban Hills. Chemical Geology, 5, 195205.CrossRefGoogle Scholar
Vitale, S. and Isaia, R. (2014) Fractures and faults in volcanic rocks (Campi Flegrei, southern Italy): insight into volcano-tectonic processes. International Journal of Earth Sciences, 103, 801819.CrossRefGoogle Scholar
Weiss, Z., Rieder, M. and Chmielová, M. (1992) Deformation of coordination polyhedra and their sheets in phyllosilicates. European Journal of Mineralogy, 4, 665682.CrossRefGoogle Scholar
White, J.S. (1981) Grothine discredited, equals norbergite. The Mineralogical Record, 12, 377378.Google Scholar
Whitney, D.L. and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185187.CrossRefGoogle Scholar
Zambonini, F. (1919) Il tufo pipernoide della Campania e i suoi minerali. Memorie per servire alla Descrizione della Carta Geologica d’Italia, 7, pp. 130.Google Scholar
Zheng, Y.F. (1990) Carbon-oxygen isotopic covariation in hydrothermal calcite during degassing of CO2. A quantitative evaluation and application to the Kushikino gold mining area in Japan. Mineralium Deposita, 25, 246250.CrossRefGoogle Scholar
Zheng, Y.F. and Hoefs, J. (1993) Carbon and oxygen isotope covariations in hydrothermal calcites. Mineralium Deposita, 28, 7989.CrossRefGoogle Scholar
Supplementary material: File

Lacalamita et al. supplementary material

Supplementary Tables

Download Lacalamita et al. supplementary material(File)
File 230.4 KB