Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T08:42:12.338Z Has data issue: false hasContentIssue false

Fine-grained petalite and spodumene dykes in the Stankuvatske Li-deposit, Ukrainian Shield: products of tectono–metamorphic recrystallisation

Published online by Cambridge University Press:  08 September 2022

Sergii Kurylo*
Affiliation:
Earth Science Institute, Slovak Academy of Sciences, Banská Bystrica, 974 11, Slovakia
Pavel Uher
Affiliation:
Department of Mineralogy, Petrology and Economic Geology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
Igor Broska
Affiliation:
Earth Science Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
Nataliia Lyzhachenko
Affiliation:
SI "Institute of Environmental Geochemistry of the National Academy of Sciences of the Ukraine", 34-a, Palladina av., 03680 Kyiv, Ukraine
Sergii Bondarenko
Affiliation:
M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine, Palladina av. 34, 03142 Kyiv, Ukraine
Reto Gieré
Affiliation:
Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, USA
*
*Author for correspondence: Sergii Kurylo, Email: kurylo.sergiy@gmail.com

Abstract

The Palaeoproterozoic (~2.0−1.8 Ga) Stankuvatske Li deposit (Ukrainian Shield, Central Ukraine) represents an uncommon case of recrystallised, fine-grained petalite ± spodumene meta-pegmatite dykes with LCT affinity hosted in amphibolites and meta-ultrabasic rocks. The meta-pegmatite dykes show remnants of primary, pre-metamorphic zoning, with dominant magmatic albite, K-feldspar, quartz, Li-phases (petalite, spodumene, rarely triphylite and montebrasite), and accessory muscovite, fluorapatite, columbite-(Fe), tantalite-(Fe), cassiterite, Ta-rich rutile, zinco- and ferronigerite, gahnite, pyrite, sphalerite and zircon. The parental magma of the meta-pegmatites was peraluminous, and enriched in Li and P, though relatively poor in B and F during the late-magmatic stage. Metasomatic reactions between residual pegmatite magma and (ultra)basic country rocks resulted in the precipitation of holmquistite, triphylite, fluorapatite, tourmaline and Rb–Cs-rich biotite. Secondary generations of fine-grained petalite, spodumene, albite and K-feldspar were formed during post-magmatic stages, i.e. during hydrothermal–metasomatic alteration and/or subsequent tectono–metamorphic recrystallisation of the primary pegmatites. The initial subsolidus metasomatism of primary feldspars took place in alkaline conditions as a result of Na (partly K) for Li exchange.

The presence of fibrolitic sillimanite and chrysoberyl, together with the scarcity of muscovite and (OH,F)-bearing minerals, point to metamorphic recrystallisation of the former Li-rich granitic pegmatites at relatively high-temperature and medium-pressure (~600±50°C; ~0.3−0.4 GPa) conditions.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Edward Grew

References

Bakarzhiev, A.Kh, Makivchuk, O.F., Ivanov, B.N., Eremenko, H.K. and Pavkin, V.P. (2000) The fine-grained petalite ores – new type of lithium mineral raw of Ukraine. Mineralni resursy Ukrainy, 1, 1619 [in Russian].Google Scholar
Barton, M.D. (1986) Phase equilibria and thermodynamic properties of minerals in the BeO – Al2O3 – SiO2 – H2O (BASH) system, with petrologic applications. American Mineralogist, 71, 277300.Google Scholar
Bayrakov, V.V., Yakubovich, O.V., Simonov, M.A., Borisovskiy, S.E. and Ziborova, T.A. (2005) Simferite Li(Mg,Fe3+, Mn3+)2(PO4)2, a new mineral. Mineralohichnyi zhurnal, 27, 112120. [in Russian]Google Scholar
Bence, A.E. and Albee, A.L. (1968) Empirical correction factors for the electron microanalysis of silicates and oxides. The Journal of Geology, 76, 32403.CrossRefGoogle Scholar
Beurlen, H., Thomas, R., Melgarejo, J.C., Silva, J.M.R. Da Rhede, D., Soares, D.R. and Silva, M.R.R. Da (2013) Chrysoberyl–sillimanite association from the Roncadeira pegmatite, Borborema Province, Brazil: implications for gemstone exploration. Journal of Geosciences, 58, 7990.CrossRefGoogle Scholar
Bondarenko, S.M., Syomka, S.M., Kurylo, S.I., Stepanyuk, L.M. and Donskoy, M.O. (2019) Tin mineralization in the lithium deposits of the Shpola-Tashlyk ore district of Ukrainian Shield. Mineralohichnyi zhurnal, 41, 315 [in Ukrainian].Google Scholar
Bradley, D.C., McCauley, A.D. and Stillings, L.M. (2017) Mineral-Deposit Model for Lithium-Cesium-Tantalum Pegmatites. Mineral Deposit Models for Resource Assessment, U.S. Geological Survey Scientific Investigations Report 2010–5070–O, 48 pp., https://doi.org/10.3133/sir20105070O.Google Scholar
Brisbin, W.C., Eby, R.K., Corkery, M.T., Černý, P., Chackowsky, L.E., Ferreira, K., Halden, N.M., Meintzer, R.E. and Trueman, D.L. (2012) Extreme fractionaction and deformation of the leucogranite – pegmatite suite at Red Cross Lake, Manitoba, Canada. III. Description of shearing and mylonitization textures in the lepidolite pegmatites. The Canadian Mineralogist, 50, 18231838.CrossRefGoogle Scholar
Burnham, C.W. and Nekvasil, H. (1986) Equilibrium properties of granite pegmatite magmas. American Mineralogist, 71, 239263.Google Scholar
Černý, P. (1989) Characteristics of pegmatite deposits of tantalum. Pp. 195239 in: Lanthanides, Tantalum and Niobium (Möller, P., Černý, P. and Saupe, F., editors). Special Publication No. 7 of the Society for Geology Applied to Mineral Deposits. Proceedings of a workshop in Berlin, Nov. 1986. Springer-Verlag Berlin.CrossRefGoogle Scholar
Černý, P. (1991) Rare-element granitic pegmatites. Part I: Anatomy and internal evolution of pegmatite deposits. Geoscience Canada, 18, 4967.Google Scholar
Černý, P. and Ercit, T.S. (2005) The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43, 20052026.CrossRefGoogle Scholar
Černý, P. and Ferguson, R.B. (1972): The Tanco pegmatite at Bernic Lake, Manitoba IV: Petalite and spodumene relations. The Canadian Mineralogist, 11, 660678.Google Scholar
Černý, P., Novák, M. and Chapman, R. (1992) Effects of sillimanite-grade metamorphism and shearing on Nb-Ta oxide minerals in granitic pegmatites: Maršikov, northern Moravia, Czechoslovakia. The Canadian Mineralogist, 30, 699718.Google Scholar
Černý, P., Ercit, T.S. and Vanstone, P.T. (1996) Mineralogy and petrology of the Tanco rare-element pegmatite deposit, southeastern Manitoba. Field Trip Guidebook, International Mineralogical Association, 17th General Meeting, Toronto, Canada, 63 pp.Google Scholar
Černý, P., Corkery, M. T., Halden, N.M., Ferreira, K., Brisbin, W.C., Chackowsky, L.E. and Meintzer, R.E (2012) Extreme fractionation and deformation of the leucogranite – pegmatite suite at Red Cross Lake, Manitoba, Canada. I. Geological setting. The Canadian Mineralogist, 50, 17931806.CrossRefGoogle Scholar
Chakoumakos, B.C. and Lumpkin, G.R. (1990) Pressure-temperature constraints on the crystallization of the Harding pegmatite, Taos county, New Mexico. The Canadian Mineralogist, 28, 287298.Google Scholar
Charoy, B., Lhote, F. and Dusausoy, Y. (1992) The crystal chemistry of spodumene in some granitic aplite-pegmatite of northern Portugal. The Canadian Mineralogist, 30, 639651.Google Scholar
Charoy, B., Noronha, F. and Lima, A. (2001) Spodumene - petalite - eucryptite: Mutual relationships and pattern of alteration in Li-rich aplite-pegmatite dykes from Northern Portugal. The Canadian Mineralogist, 39, 729746.CrossRefGoogle Scholar
Chatterjee, N.D. and Johannes, W. (1974) Thermal stability and standard thermodynamic properties of synthetic 2M1 muscovite, KAl2AlSi3Ol0(OH)2. Contributions of Mineralogy and Petrology, 48, 89114.CrossRefGoogle Scholar
Eremenko, H.K., Ivanov, B.N. Belykh, N.A., Kuzmenko, A.V. and Makyvchuk, O.F. (1996) Mineralogical features and conditions of formation of lithium pegmatites of Kirovograd block (Ukrainian Shield). Mineralohichnyi zhurnal, 18, 4857 [in Russian].Google Scholar
Fei, G. et al. (2020) Petrogenesis of the Lijiagou spodumene pegmatites in Songpan-Garze Fold Belt, West Sichuan, China: Evidence from geochemistry, zircon, cassiterite and coltan U-Pb geochronology and Hf isotopic compositions. Lithos, 364–365, 118.Google Scholar
Fenn, P.M. (1986) On the origin of graphic granite. American Mineralogist, 71, 325330.Google Scholar
Franz, G. and Morteani, G. (1984) The formation of chrysoberyl in metamorphosed pegmatites. Journal of Petrology, 25, 2752.CrossRefGoogle Scholar
Franz, G. and Morteani, G. (2002) Be-minerals: Synthesis, stability, and occurrence in metamorphic rocks. Pp. 551589 in: Volume 50: Beryllium: Mineralogy, Petrology, and Geochemistry (Grew, Edward S., editor). Reviews in Mineralogy and Geochemistry 50. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Galliski, M.Á., Černý, P., Márquez-Zavalía, M.F. and Chapman, R. (2012) An association of secondary Al-Li-Be-Ca-Sr Phospates in the San Elias Pegmatite, San, Luis, Argentina. The Canadian Mineralogist, 50, 933942.CrossRefGoogle Scholar
Gintov, O.B. and Mychak, S.V. (2011) The stress state and deformation of the crust of the central part of the Ingul block materials tectonophysical study Novoukrainsk massif. Heofizychnyi zhurnal, 33, 2845 [in Russian].Google Scholar
Gourcerol, B., Gloaguen, E., Melleton, J., Tuduri, J. and Galiegue, X. (2019) Re-assessing the European lithium resource potential – A review of hard-rock resources and metallogeny. Ore Geology Reviews, 109, 494519.CrossRefGoogle Scholar
Hrinchenko, O., Bondarenko, S., Syomka, V., Ivanov, B.N. and Kanunikova, L.I. (2016) Composition of Ta-Nb minerals in pegmatites and apogranite metasomatites from Shpoliano-Tashlyk ore region. Heokhimiia i rudoutvorennia, 36, 4757 [in Ukrainian].Google Scholar
Ivanov, B. and Lysenko, V. (2001) The results of exploration works on lithium and gold in years 1991–2001, with estimation of reserves on square of 100 square km in frame of Lypniazhka Dome Structure. Geological report, KP “Kirovgeology”, Smolino [in Russian].Google Scholar
Ivanov, B.N., Kosiuga, V.N. and Pogukai, V.I. (2011) Areal end exocontact metasomatites of Shpoliano-Tashlyk ore region. Heokhimiia i rudoutvorennia, 30, 10–17 [in Russian].Google Scholar
Jahns, R.H. (1982) Internal evolution of granitic pegmatite. In Granitic pegmatites in science and industry (Černý, P. ed.). Mineralogical Association of Canada, Short Course Handbook, 8, 293328.Google Scholar
Jaskula, B.W. (2021) Lithium. Pp. 9899 in: Mineral commodity summaries 2021. U.S. Geological Survey.Google Scholar
Kurylo, S., Broska, I., Bondarenko, S., Stepanyuk, L.M., Luptáková, J. and Lyzhachenko, N. (2019) Triphylite inclusions in apatite from Stankuvatske Li-deposit. Proceedings of 9th Mineralogy-Petrology Conference Petros 2019, Comenius University, Bratislava, Slovakia. No. 34.Google Scholar
Li, J., Chou, I.M., Yuan, S. and Burruss, R.C. (2013) Observations on the crystallization of spodumene from aqueous solutions in a hydrothermal diamond-anvil cell. Geofluids, 13, 467474.CrossRefGoogle Scholar
Liu, C., Wang, R.C., Wu, F.Y., Xie, L., Liu, X.C., Li, X.K., Yang, L. and Li, X.J. (2020) Spodumene pegmatites from the Pusila pluton in the higher Himalaya, South Tibet: Lithium mineralisation in a highly fractionated leucogranite batholith. Lithos, 358–359, 105421.Google Scholar
London, D. (1984) Experimental phase equilibria in the system LiAlSiO4–SiO2–H2O: a petrogenetic grid for lithium-rich pegmatites. American Mineralogist, 69, 9951004.Google Scholar
London, D. (1986) Magmatic-hydrothermal transition in the Tanco rare-element pegmatite: evidence from fluid inclusions and phase-equilibrium experiments. American Mineralogist, 71, 376395.Google Scholar
London, D. (1992) The application of experimental petrology to the genesis and crystallization of granitic pegmatites. The Canadian Mineralogist, 30, 499540.Google Scholar
London, D. (2008) Pegmatites. The Canadian Mineralogist Special Publication, 10, 1347.Google Scholar
London, D. (2014) A petrologic assessment of internal zonation in granitic pegmatites. Lithos 184–187, 74104.CrossRefGoogle Scholar
London, D. (2015) Reply to Thomas and Davidson on “A petrologic assessment of internal zonation in granitic pegmatites” (London, 2014). Lithos, 212–215, 469484.CrossRefGoogle Scholar
London, D. (2018) Ore-forming processes within granitic pegmatites. Ore Geology Reviews, 101, 349383.CrossRefGoogle Scholar
London, D. and Burt, D.M. (1982a) Alteration of spodumene, montebrasite and lithiophilite in pegmatites of the White Picacho district, Arizona. American Mineralogist, 67, 97113.Google Scholar
London, D. and Burt, D.M. (1982b) Lithium aluminosilicate occurrences in pegmatites and the lithium aluminosilicate phase diagram. American Mineralogist, 67, 483493.Google Scholar
London, D. and Burt, D.M. (1982c) Chemical models for lithium aluminosilicate stabilities in pegmatites and granites. American Mineralogist, 67, 494509.Google Scholar
London, D., Herving, R.L. and Morgan, G.B. VI (1988) Melt-vapor solubilities and element partitioning in peraluminous granite-pegmatite systems: experimental results with Macusani glass at 200 MPa. Contributions to Mineralogy and Petrology, 99, 360373.CrossRefGoogle Scholar
Losey, A., Rakovan, J., Hughes, J.M., Francis, C. and Dyar, M.D. (2004) Structural variation in the lithiophilite-triphylite series and other olivine-group structures. The Canadian Mineralogist, 42, 11051115.CrossRefGoogle Scholar
Maneta, V. (2015) The effect of Li on the petrogenesis of granitic pegmatites. McGill University, Montréal. PhD. Thesis.Google Scholar
Morgan, G.B. VI and London, D. (1987) Alteration of amphibolitic wallrocks around the Tanco rare-element pegmatite, Bernic Lake, Manitoba. American Mineralogist, 72, 10971121.Google Scholar
Morgan, G.B. VI and London, D. (1989) Experimental reactions of amphibolite with boron-bearing aqueous fluids at 200 MPa: Implications for tourmaline stability and partial melting in mafic rocks. Contributions to Mineralogy and Petrology, 102, 281297.CrossRefGoogle Scholar
Nechaev, S.V. and Syomka, V.O. (2012) Ore-bearing metasomatites of central part of the Ukrainian Shield (USh): prognostic, prospecting and general geological significance. Geochemistry and ore formation, 31–32, 1223 [in Russian].CrossRefGoogle Scholar
Nechaev, S.V., Makivchuk, O.F. and Belykh, N.A. (1991) New rare-metal ore region of Ukraine. Heolohichnyi zhurnal, 4, 119123 [in Ukrainian].Google Scholar
Nizamoff, J. (2006) The Mineralogy, Geochemistry and Phosphate Paragenesis of the Palermo #2 Pegmatite, North Groton, New Hampshire. MSc. thesis, University of New Orleans, New Orlean.Google Scholar
Partington, G.A., McNaughton, N.J. and Williams, I.S. (1995) A review of the geology, mineralization, and geochronology of the Greenbushes Pegmatite, Western Australia. Economic Geology, 90, 616635.CrossRefGoogle Scholar
Rao, C., Wang, R.C., Hatert, F. and Baijot, M. (2014) Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26, 179188.Google Scholar
Roda-Robles, E., Pesquera, A., Gil-Crespo, P.P., Vieira, R., Lima, A., Garate-Olave, I., Martins, T. and Torres-Ruiz, J. (2016) Geology and mineralogy of Li mineralization in the Central Iberian Zone (Spain and Portugal). Mineralogical Magazine, 80, 103126.CrossRefGoogle Scholar
Shcherbak, N.P., Artemenko, G.V., Lisna, I.M., Ponomarenko, A.N. and Shumlianskyi, L.V. (2008) Geochronology of Early Precambrian of Ukrainian Shield. Proterozoi, Naukova Dumka, Kyiv, Ukraine, 239 pp.Google Scholar
Simmons, Wm.B. and Webber, K.L. (2008) Pegmatite genesis: state of the art. European Journal of Mineralogy, 20, 421438.CrossRefGoogle Scholar
Stepanyuk, L.M., Hrinchenko, O.V., Bondarenko, S.M., Syomka, V.O. and Kurylo, S.I. (2018) Geochronology of lithium-bearing granitoids of Inhul Megablock (Ukrainian Shield). Visnyk Kyivskoho natsionalnoho universytetu imeni Tarasa Shevchenka. Seriia Heolohiia, 3, 2328 [in Ukrainian].CrossRefGoogle Scholar
Stepanyuk, L., Kurylo, S., Syomka, V., Dovbush, T., Bondarenko, S., Kovtun, O., Kotvitska, I. (2021) Uranium-lead geochronology on monazite from the granite of the Lypnyazka massif and its framing (Ingul Domain of the Ukrainian Shield). Heokhimiia i rudoutvorennia, 42, 7179 [in Ukrainian].Google Scholar
Stewart, D.B. (1978) Petrogenesis of lithium-rich pegmatites. American Mineralogist, 63, 970980.Google Scholar
Stilling, A. (1998) Bulk Composition of the Tanco Pegmatite at Bernic Lake, Manitoba, Canada. MSc. thesis, University of Manitoba, Winnipeg, Canada.Google Scholar
Vignola, P., Diella, V., Oppizzi, P., Tiepolo, M. and Weiss, S. (2008) Phosphate assemblages from the Brissago granitic pegmatite, western Southern Alps, Switzerland. The Canadian Mineralogist, 46, 635650.CrossRefGoogle Scholar
Vozniak, D.K. and Pavlyshyn, V.I. (2001) The high thermobaric flow of liquid CO2 and it role in mineralisation (in example of Ukrainian Shield). Mineralohichnyi zhurnal, 23, 1218 [in Ukrainian].Google Scholar
Vozniak, D.K., Bugaenko, V.M., Galaburda, Ju.A., Melnikov, V.S., Pavlyshyn, V.I., Bondarenko, S.M. and Syomka, V.O. (2000) Features of mineral composition and conditions of formation of rare-metal pegmatites on the west part of Kirovohrad block (Ukrainian Shield). Mineralohichnyi zhurnal, 22, 2141 [in Ukrainian].Google Scholar
Warr, L.N. (2021) IMA-CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291320.CrossRefGoogle Scholar
Wolf, M.B. and London, D. (1997) Boron in granitic magmas: stability of tourmaline in equilibrium with biotite and cordierite. Contribution of Mineralogy and Petrology, 130, 1230.CrossRefGoogle Scholar