Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-29T12:51:32.352Z Has data issue: false hasContentIssue false

Evolution of fumarolic anhydrous copper sulfate minerals during successive hydration/dehydration

Published online by Cambridge University Press:  02 February 2021

Oleg I. Siidra*
Affiliation:
Department of Crystallography, St. Petersburg State University, University Embankment 7/9, 199034St. Petersburg, Russia
Artem S. Borisov
Affiliation:
Department of Crystallography, St. Petersburg State University, University Embankment 7/9, 199034St. Petersburg, Russia
Dmitri O. Charkin
Affiliation:
Chemistry Department, Moscow State University, Leninskie Gory 1-3, Moscow199992Russia
Wulf Depmeier
Affiliation:
Institut für Geowissenschaften der Universität Kiel, Olshausenstr. 40, D-24098Kiel, Germany
Natalia V. Platonova
Affiliation:
X-ray Diffraction Resource Center, St. Petersburg State University, University Embankment 7/9, 199034St. Petersburg, Russia
*
*Author for correspondence: Oleg I. Siidra, Email: o.siidra@spbu.ru

Abstract

Hydration processes of primary anhydrous minerals as well as dehydration of the hydrated phases are relevant not only for answering geochemical and petrological questions, but are also interesting in the context of the theory of the ‘Evolution of minerals’. Our study of the evolution of anhydrous exhalative sulfates in hydration and dehydration processes has demonstrated the complexity of the processes for a number of minerals from the active high-temperature fumaroles of Tolbachik volcano (chalcocyanite Cu(SO4), dolerophanite Cu2O(SO4), alumoklyuchevskite K3Cu3AlO2(SO4)4 and itelmenite Na2CuMg2(SO4)4). Hydration and dehydration experiments were carried out for all four minerals using powder X-ray diffraction. A typical structural characteristic of several anhydrous copper sulfate minerals of fumarolic origin is the presence of oxygen-centred OCu4 tetrahedra. These are absent in the structures of all known hydrated minerals or synthetic compounds of the class under consideration. Hydration of minerals initially containing O2– anions as part of oxocomplexes, proceeds with sequential formation of a large series of hydroxysalts. On the contrary, hydration of itelmenite with its relatively complex ‘initial’ structure, but without additional oxygen atoms that are strong Lewis bases, results in formation of simpler hydrates. The lower the temperature and the larger the excess of water, the stronger the tendency of the cations to adopt higher hydration numbers thus outcompeting the sulfate anions as ligands. Ultimately, the water molecules completely expel the bridging sulfate anions from the metal coordination sphere yielding relatively simple fully hydrated structures.

Type
Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Ferdinando Bosi

References

Altheide, T., Chevrier, V., Nicholson, C. and Denson, J. (2009) Experimental investigation of the stability and evaporation of sulfate and chloride brines on Mars. Earth and Planetary Science Letters, 282, 6978.CrossRefGoogle Scholar
Bacon, G.E. and Titterton, D.H. (1975) Neutron-diffraction studies of CuSO4⋅5(H2O) and CuSO4⋅5(D2O). Zeitschrift für Kristallographie, 141, 330341.CrossRefGoogle Scholar
Balassone, G., Petti, C., Mondillo, N., Panikorovskii, T.L., de Gennaro, R., Cappelletti, P., Altomare, A., Corriero, N., Cangiano, M. and D'Orazio, L. (2019) Copper minerals at Vesuvius volcano (Southern Italy): a mineralogical review. Minerals, 9, 730.CrossRefGoogle Scholar
Baur, W.H. (1962) Zur Kristallchemie der Salzhydrate. Die Kristallstrukturen von MgSO4⋅4(H2O) (Leonhardtit) und FeSO4⋅4(H2O) (Rozenit). Acta Crystallographica, 15, 815826.CrossRefGoogle Scholar
Baur, W.H. and Rolin, J.L. (1972) Salt hydrates. IX. The comparison of the crystal structure of magnesium sulfate pentahydrate with copper sulfate pentahydrate and magnesium chromate pentahydrate. Acta Crystallographica, B28, 14481455.CrossRefGoogle Scholar
Bosi, F., Belardi, G. and Ballirano, P. (2009) Structural features in Tutton's salts K2[M2+(H2O)6](SO4)2, with M2+= Mg, Fe, Co, Ni, Cu, and Zn. American Mineralogist, 94, 7482.CrossRefGoogle Scholar
Brese, N.E., O'Keeffe, M., Ramakrishna, B.L. and Von Dreele, R.B. (1990) Low-temperature structures of CuO and AgO and their relationships to those of MgO and PdO. Journal of Solid State Chemistry, 89, 184190.CrossRefGoogle Scholar
Bruker. (2014) TOPAS, Version 5.0. Bruker AXS Inc, Madison, USA.Google Scholar
Calleri, M., Gavetti, A., Ivaldi, G. and Rubbo, M. (1984) Synthetic epsomite, MgSO4(H2O)7: absolute configuration and surface features of the complementary {111} forms. Acta Crystallographica, B40, 218222.CrossRefGoogle Scholar
Cheng, L., Li, W., Li, Y., Yang, Y., Li, Y., Cheng, Y. and Song, D. (2019) Thermal analysis and decomposition kinetics of the dehydration of copper sulfate pentahydrate. Journal of Thermal Analysis and Calorimetry, 135, 26972703.CrossRefGoogle Scholar
Chipera, S.J. and Vaniman, D.T. (2007) Experimental stability of magnesium sulfate hydrates that may be present on Mars. Geochimica et Cosmochimica Acta, 71, 241250.CrossRefGoogle Scholar
Effenberger, H. (1985) Cu2O(SO4), Dolerophanite: refinement of the crystal structure with a comparison of [OCu(II)4] tetrahedra in inorganic compounds. Monatshefte für Chemie, 116, 927931.CrossRefGoogle Scholar
Fan, X.-F., Sun, H.-D., Shen, Z.-X., Kuo, J.-L. and Lu, Y.-M. (2008) A first-principle analysis on the phase stabilities, chemical bonds and band gaps of wurtzite structure AxZn1–xO alloys (A = Ca, Cd, Mg). Journal of Physics: Condensed Matter, 20, 235221.Google Scholar
Fedotov, S.A. and Markhinin, Y.K. (editors) (1983) The Great Tolbachik Fissure Eruption. Cambridge University Press, New York.Google Scholar
Fischer, W. and Hellner, E. (1964) Ueber die Struktur des Vanthoffits. Acta Crystallographica, 17, 16131613.CrossRefGoogle Scholar
Gorskaya, M.G., Vergasova, L.P., Filatov, S.K., Rolich, D.V. and Ananiev, V.V. (1995) Alumoklyuchevskite, K3Cu3AlO2(SO4)4, a new oxysulfate of K, Cu, and Al from volcanic exhalations, Kamchatka, Russia. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 124, 95100.Google Scholar
Grevel, K.-D. and Majzlan, J. (2009) Internally consistent thermodynamic data for magnesium sulfate hydrates. Geochimica et Cosmochimica Acta, 73, 68056815.CrossRefGoogle Scholar
Hawthorne, F.C. and Ferguson, R.B. (1975) Refinement of the crystal structure of kröhnkite. Acta Crystallographica, B31, 17531755.CrossRefGoogle Scholar
Hawthorne, F.C., Groat, L.A. and Eby, R.K. (1989) Antlerite, Cu3SO4(OH)4, a heteropolyhedral wallpaper structure. The Canadian Mineralogist, 27, 205209.Google Scholar
Hazen, R.M., Papineau, D., Bleeker, W., Downs, R.T., Ferry, J.M., McCoy, T.J., Sverjensky, D.A. and Yang, H. (2008) Mineral evolution. American Mineralogist, 93, 16931720.CrossRefGoogle Scholar
Hughes, J.M. and Stoiber, R.E. (1985) Vanadium sublimates from the fumaroles of Izalco Volcano, El Salvador. Journal of Volcanology and Geothermal Research, 24, 283291.CrossRefGoogle Scholar
Kahler, E. (1962) Die Kristallstruktur von Dolerophanit, Cu2O(SO4), ein Beispiel fuer 5 Koordiniertes Kupfer. Naturwissenschaften, 49, 298.CrossRefGoogle Scholar
Krivovichev, S.V. (2013) Structural complexity of minerals: information storage and processing in the mineral world. Mineralogical Magazine, 77, 275326.CrossRefGoogle Scholar
Krivovichev, S.V. (2014) Which inorganic structures are the most complex? Angewandte Chemie – International Edition, 53, 654661.CrossRefGoogle ScholarPubMed
Krivovichev, S.V., Mentré, O., Siidra, O.I., Colmont, M. and Filatov, S.K. (2013) Anion-centered tetrahedra in inorganic compounds. Chemical Reviews, 113, 64596535.CrossRefGoogle ScholarPubMed
Lander, L., Rousse, G., Batuk, D., Colin, C.V., Dalla Corte, D.A. and Tarascon, J.-M. (2017) Synthesis, structure, and electrochemical properties of K-based sulfates K2M2(SO4)3 with M = Fe and Cu. Inorganic Chemistry, 56, 20132021.CrossRefGoogle Scholar
Lindström, N., Talreja, T., Linnow, K., Stahlbuhk, A. and Steiger, M. (2016) Crystallization behavior of Na2SO4 – MgSO4 salt mixtures in sandstone and comparison to single salt behavior. Applied Geochemistry, 69, 5070.CrossRefGoogle Scholar
Ma, H., Bish, D.L., Wang, H.W. and Chipera, S.J. (2009) Determination of the crystal structure of sanderite, MgSO4⋅2H2O, by X-ray powder diffraction and the charge flipping method. American Mineralogist, 94, 622625.CrossRefGoogle Scholar
Menyailov, I.A. and Nikitina, L.P. (1980a) Chemistry and metal contents of magmatic gases: the New Tolbachik Volcanoes case (Kamchatka). Bulletin of Volcanology, 43, 195205.CrossRefGoogle Scholar
Menyailov, I.A., Nikitina, L.P. and Shapar, V.N. (1980b) Geochemical features of exhalations of Great Tolbachik Fissure Eruption. Nauka, Moscow [in Russian].Google Scholar
Mills, S.J., Wilson, S.A., Dipple, G.M. and Raudsepp, M. (2010) The decomposition of konyaite: Importance in CO2 in mine tailings. Mineralogical Magazine, 74, 903917.CrossRefGoogle Scholar
Mitev, P.D., Gajewski, G. and Hermansson, K. (2009) Anharmonic OH vibrations in brucite: small pressure-induced redshift in the range 0–22 GPa. American Mineralogist, 94, 16871697.CrossRefGoogle Scholar
Nagase, K., Yokobayashi, H. and Sone, K. (1978) Spectrophotometric and thermoanalytical studies on the dehydration of copper (ii) sulfate and its double salts. Thermochimica Acta, 23, 283291.CrossRefGoogle Scholar
Nazarchuk, E.V., Siidra, O.I., Agakhanov, A.A., Lukina, E.A., Avdontseva, E.Yu. and Karpov, G.A. (2018) Itelmenite, Na2CuMg2(SO4)4, a New anhydrous sulfate mineral from the Tolbachik Volcano. Mineralogical Magazine, 82, 12331241.CrossRefGoogle Scholar
Nazarchuk, E.V., Siidra, O.I., Nekrasova, D.O., Shilovskikh, V.V., Borisov, A.S. and Avdontseva, E.Yu. (2020) Glikinite, Zn3O(SO4)2, a new anhydrous zinc oxysulfate mineral structurally based on OZn4 tetrahedra. Mineralogical Magazine, 84, 563567.CrossRefGoogle Scholar
Nordstrom, D.K. (1982) The effect of sulfate on aluminum concentrations in natural waters: some stability relations in the system Al2O3 – H2O – SO3 at 298 K. Geochimica et Cosmochimica Acta, 46, 618692.CrossRefGoogle Scholar
Pautov, L.A., Mirakov, M.A., Siidra, O.I., Faiziev, A.R., Nazarchuk, Е.V., Karpenko, V.Yu. and Makhmadsharif, S. (2020) Falgarite, K4(VO)3(SO4)5, a new mineral from sublimates of a natural underground coal fire at the tract of Kukhi-Malik, Fan-Yagnob Coal Deposit, Tajikistan. Mineralogical Magazine, 84, 455462.CrossRefGoogle Scholar
Pekov, I.V., Koshlyakova, N.N., Zubkova, N.V., Lykova, I.S., Britvin, S.N., Yapaskurt, V.O., Agakhanov, A.A., Shchipalkina, N.V., Turchkova, A.G. and Sidorov, E.G. (2018a) Fumarolic arsenates − a special type of arsenic mineralization. European Journal of Mineralogy, 30, 305322.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V. and Pushcharovsky, D.Y. (2018b) Copper minerals from volcanic exhalations – a unique family of natural compounds: crystal-chemical review. Acta Crystallographica, B74, 502518.Google Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Chukanov, N.V., Kasatkin, A.V., Kuznetsov, A.M. and Pushcharovsky, D.Y. (2013) Kobyashevite, Cu5(SO4)2(OH)6⋅4H2O, a new devilline-group mineral from the Vishnevye Mountains, South Urals, Russia. Mineralogy and Petrology, 107, 201210.CrossRefGoogle Scholar
Ramamurthy, P. and Secco, E.A. (1970) Studies on metal hydroxy compounds. XII. Thermal analyses, decomposition kinetics, and infrared spectra of copper basic oxysalts. Canadian Journal of Chemistry, 48, 35103519.CrossRefGoogle Scholar
Rasmussen, S.E., Jorgensen, J.E. and Lundtoft, B. (1996) Structures and phase transitions of Na2SO4. Journal of Applied Crystallography, 29, 4247.CrossRefGoogle Scholar
Rentzeperis, P.J. and Soldatos, C.T. (1958) The crystal structure of the anhydrous magnesium sulphate. Acta Crystallographica, 11, 686688.CrossRefGoogle Scholar
Siidra, O.I., Vergasova, L.P., Kretser, Y.L., Polekhovsky, Y.S., Filatov, S.K. and Krivovichev, S.V. (2014b) Unique thallium mineralization in the fumaroles of Tolbachik Volcano, Kamchatka peninsula, Russia. II. Karpovite, Tl2VO(SO4)2(H2O). Mineralogical Magazine, 78, 16991709.CrossRefGoogle Scholar
Siidra, O.I., Vergasova, L.P., Kretser, Y.L., Polekhovsky, Y.S., Filatov, S.K. and Krivovichev, S.V. (2014c) Unique thallium mineralization in the fumaroles of Tolbachik Volcano, Kamchatka peninsula, Russia. III. Evdokimovite, Tl4(VO)3(SO4)5(H2O)5. Mineralogical Magazine, 78, 17111724.CrossRefGoogle Scholar
Siidra, O.I., Vergasova, L.P., Krivovichev, S.V., Kretser, Y.L., Zaitsev, A.N. and Filatov, S.K. (2014a) Unique thallium mineralization in the fumaroles of Tolbachik Volcano, Kamchatka peninsula, Russia. I. Markhininite, TlBi(SO4)2. Mineralogical Magazine, 78, 16871698.CrossRefGoogle Scholar
Siidra, O.I., Borisov, A.S., Lukina, E.A., Depmeier, W., Platonova, N.V., Colmont, M. and Nekrasova, D.O. (2019a) Reversible hydration/dehydration and thermal expansion of euchlorine, ideally KNaCu3O(SO4)3. Physics and Chemistry of Minerals, 46, 403416.CrossRefGoogle Scholar
Siidra, O.I., Lukina, E.A., Nazarchuk, E.V., Depmeier, W., Bubnova, R.S., Agakhanov, A.A., Avdontseva, E.Yu., Filatov, S.K. and Kovrugin, V.M. (2018a) Saranchinaite, Na2Cu(SO4)2, a new exhalative mineral from Tolbachik Volcano, Kamchatka, Russia, and a product of the reversible dehydration of kröhnkite, Na2Cu(SO4)2(H2O)2. Mineralogical Magazine, 82, 257274.CrossRefGoogle Scholar
Siidra, O.I., Nazarchuk, E.V., Agakhanov, A.A., Lukina, E.A., Zaitsev, A.N., Turner, R., Filatov, S.K., Pekov, I.V., Karpov, G.A. and Yapaskurt, V.O. (2018b) Hermannjahnite, CuZn(SO4)2, a new mineral with chalcocyanite derivative structure from the Naboko Scoria Cone of the 2012–2013 Fissure Eruption at Tolbachik Volcano, Kamchatka, Russia. Mineralogy and Petrology, 112, 123134.CrossRefGoogle Scholar
Siidra, O.I., Nazarchuk, E.V., Lukina, E.A., Zaitsev, A.N. and Shilovskikh, V.V. (2018c) Belousovite, KZn(SO4)Cl, a new sulfate mineral from the Tolbachik Volcano with apophyllite sheet-topology. Mineralogical Magazine, 82, 10791088.CrossRefGoogle Scholar
Siidra, O.I., Nazarchuk, E.V., Zaitsev, A.N. and Shilovskikh, V.V. (2020a) Majzlanite, K2Na(ZnNa)Ca(SO4)4, a new anhydrous sulfate mineral with complex cation substitutions from Tolbachik Volcano. Mineralogical Magazine, 84, 153158.CrossRefGoogle Scholar
Siidra, O.I., Nazarchuk, E.V., Zaitsev, A.N. and Vlasenko, N.S. (2020b) Koryakite, NaKMg2Al2(SO4)6, a new NASICON-related anhydrous sulfate mineral from Tolbachik Volcano. Mineralogical Magazine, 84, 283287.CrossRefGoogle Scholar
Siidra, O.I., Nazarchuk, E.V., Zaitsev, A.N., Lukina, E.A., Avdontseva, E.Yu., Vergasova, L.P., Vlasenko, N.S., Filatov, S.K., Turner, R. and Karpov, G.A. (2017) Copper oxosulphates from fumaroles of Tolbachik Volcano: Puninite, Na2Cu3O(SO4)3 – a new mineral species and structure refinements of kamchatkite and alumoklyuchevskite. European Journal of Mineralogy, 29, 499510.CrossRefGoogle Scholar
Siidra, O.I., Nazarchuk, E.V., Agakhanov, A.A. and Polekhovsky, Yu.S. (2019c) Aleutite [Cu5O2](AsO4)(VO4)⋅(Cu0.50.5)Cl, a new complex salt-inclusion mineral with Cu2+ substructure derived from Kagome-net. Mineralogical Magazine, 83, 847853.CrossRefGoogle Scholar
Siidra, O.I., Nazarchuk, E.V., Zaitsev, A.N., Polekhovsky, Yu.S., Wenzel, T. and Spratt, J. (2019b) Dokuchaevite, Cu8O2(VO4)3Cl3, a new mineral with remarkably diverse Cu2+ mixed-ligand coordination environments. Mineralogical Magazine, 83, 749755.CrossRefGoogle Scholar
Sklute, E.C., Rogers, A.D., Gregerson, J.C., Jensen, H.B., Reeder, R.J. and Dyar, M.D. (2018) Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: implications for Mars. Icarus, 302, 285295.CrossRefGoogle ScholarPubMed
Stanimirova, T. and Ivanova, K. (2019) Transformation of ktenasite-type minerals to langite, posnjakite, and brochantite under water treatment. Comptes rendus de l'Academie bulgare des Sciences, 72, 768776.Google Scholar
Steiger, M., Linnow, K., Ehrhardt, D. and Rohde, M. (2011) Decomposition reactions of magnesium sulfate hydrates and phase equilibria in the MgSO4–H2O and Na+–Mg2+–Cl–SO42––H2O systems with implication for Mars. Geochimica et Cosmochimica Acta, 75, 36003626.CrossRefGoogle Scholar
Tanaka, H. and Koga, N. (1988) Preparation and thermal decomposition of basic copper (II) sulfates. Thermochimica Acta, 133, 221226.CrossRefGoogle Scholar
Ting, V.P., Henry, P.F., Schmidtmann, M., Wilson, C.C. and Weller, M.T. (2009) In situ neutron powder diffraction and structure determination in controlled humidities. Chemical Communications, 48, 75277529.CrossRefGoogle Scholar
Uzunov, I., Klissurski, D. and Teocharov, L. (1995) Thermal decomposition of basic copper sulfate monohydrate. Journal of Thermal Analysis, 44, 685696.CrossRefGoogle Scholar
Vaniman, D.T., Bish, D.L., Chipera, S.J., Fialips, C.I., Carey, J.W. and Feldman, W.G. (2004) Magnesium sulphate salts and the history of Water on Mars. Nature, 431, 663665.CrossRefGoogle ScholarPubMed
Vergasova, L.P. and Filatov, S.K. (2012) New mineral species in products of fumarole activity of the Great Tolbachik Fissure Eruption. Journal of Volcanology and Seismology, 6, 281289.CrossRefGoogle Scholar
Vergasova, L.P. and Filatov, S.K. (2016) A study of volcanogenic exhalation mineralization. Journal of Volcanology and Seismology, 10, 7185.CrossRefGoogle Scholar
Wildner, M. (1992) On the geometry of Co(II)O6 polyhedra in inorganic compounds. Zeitschrift für Kristallographie, 202, 5170.CrossRefGoogle Scholar
Xu, W., Tosca, N.J., Mclennan, S.M. and Parise, J.B. (2009) Humidity-induced phase transitions of ferric sulfate minerals studied by in situ and ex situ X-ray diffraction. American Mineralogist, 94, 16291637.CrossRefGoogle Scholar
Yoder, C.H., Agee, T.M., Ginion, K.E., Hofmann, A.E., Ewanichak, J.E., Schaeffer, C.D. Jr., Carroll, M.J., Schaeffer, R.W. and McCaffrey, P.F. (2007) The relative stabilities of the copper hydroxyl sulfates. Mineralogical Magazine, 71, 571577.CrossRefGoogle Scholar
Zahrobsky, R.F. and Baur, W.H. (1968) On the crystal chemistry of salt hydrates. V. The determination of the crystal structure of CuSO4⋅3H2O (bonattite). Acta Crystallographica, B24, 508513.CrossRefGoogle Scholar
Zalkin, A., Ruben, H. and Templeton, D.H. (1964) The crystal structure and hydrogen bonding of magnesium sulfate hexahydrate. Acta Crystallographica, 17, 235240.CrossRefGoogle Scholar
Zhou, H.A., Liu, Z., Ang, S.S. and Zhang, J.-J. (2020) Synthesis, structure, and electrochemical performances of a novel three-dimensional framework K2[Cu(SO4)2]. Solid State Sciences, 100, 106104.CrossRefGoogle Scholar
Supplementary material: PDF

Siidra et al. supplementary material

Siidra et al. supplementary material

Download Siidra et al. supplementary material(PDF)
PDF 198.5 KB