Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T21:37:08.182Z Has data issue: false hasContentIssue false

Crustal anatexis and its relation to the exhumation of collisional orogenic belts, with particular reference to the Himalaya

Published online by Cambridge University Press:  05 July 2018

A. G. Whittington*
Affiliation:
Department of Geology, University of Illinois, 1301 W. Green St., Urbana, IL 61801, USA
P. J. Treloar
Affiliation:
Centre for Earth and Environmental Sciences Research, School of Geological Sciences, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
*

Abstract

We review the causes, mechanisms and consequences of crustal anatexis during the exhumation of metamorphic terranes, from a petrological perspective. During both prograde and retrograde metamorphism, limited influx of free hydrous fluids may result in small volumes of very hydrous melts, which cannot ascend far (if at all) before reaching their solidus. If thermal conditions for dehydration melting are attained in fertile micaceous crustal layers, much larger volumes of water-undersaturated granitic magmas may result, especially where limited external fluid influx raises water activities above those that may be buffered by dehydrating hydrous phases. Magmas have specific trace element characteristics depending on the reaction which formed them which, combined with accessory phase thermometry, may enable the (P-T) conditions of melting to be ascertained. Small volume-fraction magmas will typically remain as in situ migmatites unless their extraction is assisted by deformation. In turn, deformation will be focused in weaker partially molten zones, so that water-undersaturated magmas may often be mobilized. Once segregated, their ascent is limited by the rate of dyke propagation, and they may reach shallow levels (<2 kbar) before crystallizing. The complex interplay between deformation and melting is exemplified by the Miocene evolution of the central Himalaya, where thrust and normal faulting, melting and exhumation were all simultaneously active processes which were linked by feedback relations. In the Nanga Parbat Massif of the western Himalaya, rapid post-Miocene denudation and vigorous fluid flux enabled rocks to experience more than one episode of melting simultaneously, at different levels of the same exhuming crustal section.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arth, J.G. (1976) Behaviour of trace elements during magmatic processes – a summary of theoretical models and their applications. Journal of Research of the US Geological Survey, 4, 4147 Google Scholar
Ashworth, J.R. and Brown, M. (editors) (1990) High-Ttemperature Metamorphism and Crustal Anatexis. Mineralogical Society Series, 2. Unwin Hyman, London.CrossRefGoogle Scholar
Ayres, M.W. and Harris, N.B.W. (1997) REE fractionation and Nd-isotope disequilibrium during crustal anatexis: constraints from Himalayan leucogranites. Chemical Geology, 139, 249269 CrossRefGoogle Scholar
Ayres, M.W., Harris, N.B.W. and Vance, D. (1997) Possible constraints on anatectic melt residence times from accessory mineral dissolution rates: an example from Himalayan leucogranites. Mineralogical Magazine, 61, 2936.CrossRefGoogle Scholar
Baker, D.R. (1989) Tracer versus trace element diffusion: Diffusional decoupling of Sr concentration from Sr isotope compositi on. Geochimica et Cosmochimica Acta, 53, 30153023.CrossRefGoogle Scholar
Bea, F. (1996) Controls on the trace element composition of crustal melts. Transactions of the Royal Society of Edinburgh: Earth Science, 83, 3341.CrossRefGoogle Scholar
Bea, F., Pereira, M.D. and Stroh, A. (1994) Mineral/ leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chemical Geology, 117, 291312.CrossRefGoogle Scholar
Beaumont, C., Fullsack, P. and Hamilton, J. (1994) Styles of crustal deformation in compressional orogens caused by subduction of the underlying lithosphere. Tectonophysics, 232, 119132.CrossRefGoogle Scholar
Blenkinsop, T.G. and Treloar, P.J. (2001) Tabular intrusion and folding of the late Archaea n Murehwa granite, Zimbabwe, during regional shortening. Journal of the Geological Society of London, 158, 653664.CrossRefGoogle Scholar
Blundy, J.D. and Wood, B.J. (1991) Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions. Geochimica et Cosmochimica Acta, 55, 193209.CrossRefGoogle Scholar
Bohlen, S.R. and Mezger, K. (1989) Origin of granulite terranes and the formation of the lowermost continental crust. Science, 244, 326329.CrossRefGoogle ScholarPubMed
Bons, P.D., Dougherty-Page, J. and Elburg, M.A. (2001) Stepwise accumulation and ascent of magmas. Journal of Metamorphic Geology, 19, 625631.CrossRefGoogle Scholar
Bouchez, J.L., Hutton, D.H.W. and W.E.Stephens, W.E. (editors) (1997) Granite: From Segregation of Melt to Emplacement Fabrics. Kluwer, The Netherlands.CrossRefGoogle Scholar
Brouand, M., Banzet, G., and Barbey, P. (1990) Zircon behaviour during crustal anatexis. Evidence from the Tibetan Slab migmatites (Nepal). Journal of Volcanology and Geothermal Research, 44, 143161.CrossRefGoogle Scholar
Brown, M. and Rushmer, T. (1997) The role of deformation in the movement of granitic melt: views from the laboratory and the field. Pp. 111144 in: Deformation–En hanced Fluid Transport in the Earth's Crust and Mantle (Holness, M., editor). Mineralogical Society Series, 8, Chapman & Hall, London.Google Scholar
Brown, M. and Solar, G.S. (1999) The mechanism of ascent and emplacement of granite magma during transpression: a syntectonic granite paradigm. Tectonophysics, 312, 133.CrossRefGoogle Scholar
Brown, M., Rushmer, T. and Sawyer, E.W. (editors) (1995 a) Mechanisms and consequences of melt segregation from crustal protoliths. Journal of Geophysical Research, 100.CrossRefGoogle Scholar
Brown, M., Averkin, Y.A. and McLellan, E.L. (1995 b) Melt segregation in migmatites. Journal of Geophysical Research, 100, 1565515679.CrossRefGoogle Scholar
Burbank, D.W., Leland, J., Fielding, E., Anderson, R.S., Brozovic, N., Reid, M.R. and Duncan, C. (1996) Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature, 379, 505510.CrossRefGoogle Scholar
Burchfiel, B.C. and Royden, L.H. (1985) North-south extension within the convergent Himalayan region. Geology, 13, 679682.2.0.CO;2>CrossRefGoogle Scholar
Burchfiel, B.C., Zhiliang, C., Hodges, K.V., Yuping, L., Royden, L.H., Changrong, D. and Jiene, X. (1992) The South Tibetan Detachment System, Himalayan Orogen: Extension contemporaneous with and parallel to shortening in a collisional mountain belt. Geological Society of America Specical Paper, 269, 41 pp.Google Scholar
Burg, J-P., Brunel, M., Gapais, D., Chen, G.M. and Liu, G.H. (1984) Deformation of leucogranites of the crystalline Main Central Thrust Sheet in southern Tibet (China). Journal of Structural Geology, 6, 535542.CrossRefGoogle Scholar
Burg, J-P., Nievergelt, P., Oberli, F., Seward, D., Davy, P., Maurin, J.C., Diao, Z.Z. and Meier, M. (1998) The Namche Barwa syntaxis: evidence for exhumation related to compressional crustal folding. Journal of Asian Earth Sciences, 16, 239252.CrossRefGoogle Scholar
Burnham, C.W. and Davis, N.F. (1971) The role of H2O in silicate melts: I. P-V-T relations in the system NaAlSi3O8 H2O to 10 kilobars, 700°C to 1100°C. American Journal of Science, 274, 902940.CrossRefGoogle Scholar
Burton, K.W. and O';Nions, R.K. (1990) The mechanisms and timescales of granulite formation at Kurunegala, Sri Lanka. Contributions to Mineralogy and Petrology, 106, 6689.CrossRefGoogle Scholar
Butler, R.W.H. and Prior, D.J. (1988) Tectonic controls on the uplift of the Nanga Parbat Massif, Pakistan Himalayas. Nature, 333, 247250.CrossRefGoogle Scholar
Butler, R.W.H., Harris, N.B.W. and Whittington, A.G. (1997) Interactions between deformation, magmatism and hydrothermal activity during active crustal thickening: a field example from Nanga Parbat, Pakistan Himalayas. Mineralogical Magazine, 61, 3751.CrossRefGoogle Scholar
Cann, J.R. (1970) Upward movement of granitic magma. Geological Magazine, 107, 335340.CrossRefGoogle Scholar
Castro, A., Fernández, C. and Vigneresse, J.L. (editors) (1999) Understanding Granites: Integrating New and Classical Techniques. Special Publication, 168, Geological Society, London.Google Scholar
Chamberlain, C.P. and Sonder, L.J. (1990) Heatproducing elements and the thermal and baric patterns of metamorphic belts. Science , 250, 763769.CrossRefGoogle ScholarPubMed
Chamberlain, C.P., Zeitler, P.K., Barnett, D.E. , Winslow, D., Poulson, S.R., Leahy, T. and Hammer, J.E. (1995) Active hydrothermal systems during the recent uplift of Nanga Parbat, Pakistan Himalaya. Journal of Geophysical Research, 100, 439453.CrossRefGoogle Scholar
Clemens, J.D. (1998) Observations on the origins and ascent mechanisms of granitic magmas. Journal of the Geological Society of London, 155, 843851.CrossRefGoogle Scholar
Clemens, J.D. and Droop, G.T.R. (1998) The fates of anatectic melts in the Earth’s crust. Lithos, 44, 2136.CrossRefGoogle Scholar
Clemens, J.D. and Mawer, C.K. (1992) Granitic magma transport by fracture propagation. Tectonophysics, 204, 339360.CrossRefGoogle Scholar
Clemens, J.D. and Vielzeuf, D. (1987) Constraints on melting and magma production in the crust. Earth and Planetary Science Letters, 86, 287306.CrossRefGoogle Scholar
Clemens, J.D., Droop, G.T.R. and Stevens, G. (1997 a) High-grade metamorphism, dehydration and crustal melting: a re-investigation based on new experiments in the silica-saturated portion of the system KAlO2–MgO–SiO2–H2O–CO2 . Contributions to Mineralogy and Petrology, 129, 308325.CrossRefGoogle Scholar
Clemens, J.D., Petford, N. and Mawer, C.K. (1997 b) Ascent mechanisms of granitic magmas: Causes and consequences. Pp. 144171 in: Deformation-enhanced Fluid Transport in the Earth’s Crust and Mantle (Holness, M., editor). Mineralogical Society Series, 8, Chapman & Hall, London.Google Scholar
Connolly, J.A.D., Holness, M.B., Rubie, D.C. and Rushmer, T. (1997) Reaction-induced microcracking; an experimental investigation of a mechanism for enhancing anatectic melt extraction. Geology, 25, 591594.2.3.CO;2>CrossRefGoogle Scholar
Copeland, P., Parrish, R.R. and Harrison, T.M. (1988) Identification of inherited radiogenic Pb in monazite and its implications for U-Pb systematics. Nature, 333,760763.CrossRefGoogle Scholar
Copeland, P., Harrison, T.M. and Le Fort, P. (1990) Age and cooling history of the Manaslu granite: implcations for Himalayan tectonics. Journal of Volcanology and Geothermal Research, 44. 3350.CrossRefGoogle Scholar
Corry, C.E. (1988) Laccoliths: mechanics of emplacement and growth.Geological Society of America Specical Paper, 220, 110 pp.Google Scholar
Cruden, A.R. (1998) On the emplacement of granite plutons. Journal of the Geological Society of London, 155, 853862.Google Scholar
Davies, G.R. and Tommasini, S. (2000) Isotopic disequilibrium during rapid crustal anatexis: implications for petrogenetic studies of magmatic processes. Chemical Geology, 162, 169191.CrossRefGoogle Scholar
Davis, D., Suppe, J. and Dahlen, F.A. (1983) Mechanics of fold-and-thrust belts and accretionary wedges. Journal of Geophysical Research, 88, 11531172.CrossRefGoogle Scholar
Debon, F., Le Fort, P., Sheppard, S.M.F. and Sonet, J. (1986) The four plutonic belts of the Transhimalaya- Himalaya: a chemical, mineralogical, isotopic and chronological synthesis along a Tibet-Nepal section. Journal of Petrology, 21, 219250 CrossRefGoogle Scholar
Deniel, C., Vidal, P., Fernandez, A., Le Fort, P. and Peucat, J. (1987) Isotopic study of the manaslu granite (Himalaya, Nepal): inferences on the age and source of the Himalayan leucogranites. Contributions to Mineralogy and Petrology, 96, 7892.CrossRefGoogle Scholar
De Yoreo, J.J., Lux, D.R. and Guidotti, C.V. (1989) The role of crustal anatexis and magma migration in the thermal evolution of regions of thickened continental crust. Pp. 187202 in: Evolution of Metamorphic Belts (Daly, J.S., Cliff, R.A. and Yardley, B.W.D., editors). Special Publication, 43. Geological Society, London.Google Scholar
Dingwell, D.B. (1999) Granitic melt viscosities. Pp. 2738 in: Understanding Granites: Integrating New and Classical Techniques (Castro, A., Fernández, C. and Vigneresse, J.L., editors). Special Publication, 168. Geological Society, London.Google Scholar
Dingwell, D.B., Romano, C. and Hess, K.-U. (1996) The effect of water on the viscosity of a haplogranitic melt under P–T–X conditions relevant to silicic volcanism. Contributions to Mineralogy and Petrology, 124, 1928.CrossRefGoogle Scholar
Dingwell, D.B., Hess, K.-U. and Romano, C. (1998 a) Viscosity data for hydrous peraluminous granitic melts: comparison with a metaluminous model. American Mineralogist, 83, 236239.CrossRefGoogle Scholar
Dingwell, D.B., Hess, K.-U. and Romano, C. (1998 b) Extremely fluid behaviour of hydrous peralkaline rhyolites. Earth and Planetary Science Letters, 158, 3138.CrossRefGoogle Scholar
Ebadi, A. and Johannes, W. (1991) Beginning of melting and composition of first melts in the system Qz–Ab–Or–H2O–CO2 . Contributions to Mineralogy and Petrology, 106, 286295.CrossRefGoogle Scholar
Edwards, M.A. and Harrison, T.M. (1997) When did the roof collapse? Late Miocene north-south extension in the high Himalaya revealed by Th-Pb monazite dating of the Khula Kangri Granite. Geology, 25, 543546.2.3.CO;2>CrossRefGoogle Scholar
England, P. and Molnar, P. (1993) Cause and effect among thrust and normal faulting, anatectic melting and exhumation in the Himalaya. Pp. 401411 in: Himalayan Tectonic. (Treloar, P.J. and Searle, M.P., editors). Special Publication, 74. Geological Society, London.Google Scholar
England, P. and Richardson, S. (1977) The influence of erosion upon the mineral facies of rocks from different metamorphic environments. Journal of the Geological Society of London, 134, 201213.CrossRefGoogle Scholar
England, P. and Thompson, A.B. (1984) Pressure-temperature-time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust. Journal of Petrology, 25, 894928.CrossRefGoogle Scholar
England, P. and Thompson, A.B. (1986) Some thermal and tectonic models for crustal melting in continental collision zones. Pp. 8394 in: Collision Tectonic. (Coward, M.P. and Ries, A.C., editors). Special Publication, 19. Geological Society, London.Google Scholar
England, P., Le Fort, P., Molnar, P. and Pêcher, A. (1992) Heat sources for Tertiary metamorphism and anatexis in the Annapurna-Manaslu region, central Nepal. Journal of Geophysical Research, 97, 21072128.CrossRefGoogle Scholar
England, R.W. (1990) The identification of granite diapirs. Journal of the Geological Society of London, 147, 931933.CrossRefGoogle Scholar
Evans, D.J., Rowley, W.J., Chadwick, R.A. and Millward, D. (1993) Seismic reflections from within the lake District batholith, Cumbria, northern England. Journal of the Geological Society of London, 150, 10431046.CrossRefGoogle Scholar
France-Lanord, C. and Le Fort, P. (1988) Crustal melting and granite genesis during the Himalayan collision orogenesis. Transactions of the Royal Society of Edinburgh: Earth Sciences, 79, 183195.CrossRefGoogle Scholar
Frost, T.P. and Mahmood, G.A. (1987) Field, chemical and physical constraints on mafic–felsic interaction in the Lamark granodiorite, Sierra Nevada, California. Geological Society of America Bulletin, 99, 272291.2.0.CO;2>CrossRefGoogle Scholar
Gardien, V., Thompson, A.B., Grujic, D. and Ulmer, P. (1995) Experimental melting of biotite + plagioclase + quartz ± muscovite assemblages and implications for crustal melting. Journal of Geophysical Research, 100, 1558115591.CrossRefGoogle Scholar
George, M.T., Harris, N.B.W. and Butler, R.W.H. (1993) The tectonic implications of contrasting granite magmatism between the Kohistan island arc and the Nanga Parbat-Haramosh Massif, Pakistan Himalaya. Pp. 173192 in: Himalayan Tectonics. (Treloar, P.J. and Searle, M.P., editors). Special Publication, 74. Geological Society, London.Google Scholar
Giletti, B.J. (1991) Rb and Sr diffusion in alkali feldspars, with implications for cooling histories of rocks. Geochimica et Cosmochimica Acta, 55, 13311343.CrossRefGoogle Scholar
Giletti, B.J. and Casserly, J.E.D. (1994) Strontium diffusion kinetics in plagioclase feldspars. Geochimica et Cosmochimica Acta, 58, 37853793.CrossRefGoogle Scholar
Gleason, G.C. and Tullis, J. (1995) A flow law for dislocation creep of quartz aggregates determined with the molten salt cell. Tectonophysics, 247, 123.CrossRefGoogle Scholar
Godin, L., Parrish, R.R., Brown, R.L. and Hodges, K.V. (2001) Crustal thickening leading to exhumation of the Himalayan metamorphic core: insight from U-Pb geochronology and 40Ar/39Ar thermochronology. Tectonics, 20, 729747.CrossRefGoogle Scholar
Guillot, S. (1999) An overview of the metamorphic evolution in Central Nepal. Journal of Asian Earth Sciences, 17, 713725.CrossRefGoogle Scholar
Guillot, S. and Le Fort, P. (1995) Geochemical constraints on the bimodal origin of High Himalayan leucogranites. Lithos, 35, 221234.CrossRefGoogle Scholar
Guillot, S., Pêcher, A., Rochette, P. and Le Fort, P. (1993) The emplacement of the Manaslu granite (Central Nepal): field and magnetic susceptibility constraints. Pp. 413428 in: Himalayan Tectonics. (Treloar, P.J. and Searle, M.P., editors). Special Publication, 74. Geological Society, London.Google Scholar
Guillot, S., Hodges, K.V., Le Fort, P. and Pêcher, A. (1994) New constraints on the age of the Manaslu leucogranite: evidence for episodic tectonic denudation in the Central Himalayas. Geology, 22, 559562.2.3.CO;2>CrossRefGoogle Scholar
Guillot, S., Le Fort, P., Pêcher, A, Barman, M.R. and Aprahamian, J. (1995) Contact metamorphism and depth of emplacement of the Manaslu granite (central Nepal): implications for Himalayan orogenesis. Tectonophysics, 241, 99119.CrossRefGoogle Scholar
Harris, N.B.W. and Ayres, M.W. (1998) The implications of Sr-isotope disequilibrium for rates of prograde metamorphism and melt extraction in anatectic terrains. Pp. 171182 in: What Drives Metamorphism and Metamorphic Reactions? (Treloar, P.J. and P.J., O';Bren, editors). Special Publication, 138. Geological Society, London.Google Scholar
Harris, N.B.W. and Inger, S. (1992) Trace element modelling of pelite-derived granites. Contributions to Mineralogy and Petrology, 110, 4656.CrossRefGoogle Scholar
Harris, N.B.W. and Massey, J.A. (1994) Decompression and anatexis of Himalayan metapelites. Tectonics, 13, 15371546.CrossRefGoogle Scholar
Harris, N.B.W., Inger, S. and Massey, J. (1993) The role of fluids in the formation of High Himalayan leucogranites. Pp. 391400 in: Himalayan Tectonics. (Treloar, P.J. and Searle, M.P., editors). Special Publication, 74. Geological Society, London.Google Scholar
Harris, N.B.W., Ayres, M.W. and Massey, J. (1995) Geochemistry of granitic melts produced during the incongruent melting of muscovite; implications for the extraction of Himalayan leucogranite magmas. Journal of Geophysical Research, 100, 1576715777.CrossRefGoogle Scholar
Harris, N.B.W., Vance, D. and Ayres, M.W. (2000) From sediment to granite: timescales of anatexis in the upper crust. Chemical Geology, 162, 155167.CrossRefGoogle Scholar
Harrison, T.M., McKeegan, K.D. and Le Fort, P. (1995) Detection of inherited monazite in the Manaslu leucogranite by 208Pb/232Th ion microprobe dating; crystallization age and tectonic implications. Earth and Planetary Science Letters, 133, 271282.CrossRefGoogle Scholar
Harrison, T.M., Ryerson, F.J., Le-Fort, P., Yin, A., Lovera, O.M. and Catlos, E.M. (1997 a) A late Miocene-Pliocene origin for the central Himalayan inverted metamorphism. Earth and Planetary Science Letters, 146, E1E7.CrossRefGoogle Scholar
Harrison, T.M., O.M., Lovera and Grove, M. (19976) New insights into the origin of two contrasting Himalayan granitic belts. Geology, 25, 899902.2.3.CO;2>CrossRefGoogle Scholar
Harrison, T.M., Grove, M., Lovera, O.M. and Catlos, E.J. (1998) A model for the origin of Himalayan anatexis and inverted metamorphism. Journal of Geophysical Research, 103, 2701727032.CrossRefGoogle Scholar
Harrison, T.M., Grove, M., Lovera, O.M., Catlos, E.J. and D'Andrea, J. (1999) The origin of Himalayan anatexis and inverted metamorphism: models and constraints. Journal of Asian Earth Sciences, 17, 755772.CrossRefGoogle Scholar
Herren, E. (1987) Zanskar Shear Zone: northeast-southwest extension within the High Himalayas (Ladakh, India) Geology, 15, 409413.2.0.CO;2>CrossRefGoogle Scholar
Hess, K.-U. and Dingwell, D.B. (1996) Viscosities of hydrous leucogranitic melts: A non-Arrhenian model. American Mineralogist, 81, 12971300.Google Scholar
Hodges, K.V. (1998) The thermodynamics of Himalayan orogenesis. Pp. 722 in: What Drives Metamorphism and Metamorphic Reactions? (Treloar, P.J. and O'Bren, P.J., editors). Special Publication, 138. Geological Society, London.Google Scholar
Hodges, K.V. (2000) Tectonics of the Himalaya and southern Tibet from two perspectives. Geological Society of America Bulletin, 112, 324350.2.0.CO;2>CrossRefGoogle Scholar
Hodges, K.V., Le Fort, P. and Pêcher, A. (1988) Possible thermal buffering by crustal anatexis in collisional orogens: thermobarometric evidence form the Nepalese Himalaya. Geology, 16, 707710.2.3.CO;2>CrossRefGoogle Scholar
Hodges, K.V., Burchfiel, B.C., Royden, L.H., Chen, Z. and Liu, Y. (1993) The metamorphic signature of contemporaneous extension and shortening in the central Himalayan orogen: data from the Nyalam transect, southern Tibet. Journal of Metamorphic Geology, 11, 721737.CrossRefGoogle Scholar
Hodges, K.V., Bowring, S., Davidek, K., Hawkins, D. and Krol, M. (1998) Evidence for rapid displacement on Himalayan normal faults and the importance of tectonic denudation in the evolution of mountain ranges. Geology, 26, 483486.2.3.CO;2>CrossRefGoogle Scholar
Hollister, L.S. (1993) The role of melt of the uplift and exhumation of orogenic belts. Chemical Geology, 108, 3148.CrossRefGoogle Scholar
Hollister, L.S. and Crawford, M.L. (1986) Melt enhanced deformation – a major tectonic process. Geology, 14, 558561.2.0.CO;2>CrossRefGoogle Scholar
Hubbard, M.S. (1989) Thermobarometric constraints on the thermal history of the Main Central Thrust zone and Tibetan slab, Nepal Himalaya. Journal of Metamorphic Geology, 7, 127134.CrossRefGoogle Scholar
Hubbard, M.S. (1996) Ductile shear as a cause of inverted metamorphism: example form the Nepal Himalaya. Journal of Geology, 104, 493499.CrossRefGoogle Scholar
Hubbard, M.S. and Harrison, T.M. (1989) 40Ar/39Ar age constraints on deformation and metamorphism in the Main Central Thrust zone and Tibetan slab, eastern Nepal Himalaya. Tectonics, 8, 865880.CrossRefGoogle Scholar
Hubbard, M.S., Spencer, D.A. and West, D.P. (1995) Tectonic exhumation of the Nanga Parbat Massif, northern Pakistan. Earth and Planetary Science Letters, 133, 213225.CrossRefGoogle Scholar
Huerta, A.D, Royden, L.H. and Hodges, K.V. (1996) The interdependence of deformational and thermal processes in mountain belts. Science, 273, 637639.CrossRefGoogle ScholarPubMed
Huerta, A.D, Royden, L.H. and Hodges, K.V. (1999) The affects of accretion, erosion and radiogenic heating on the metamorphic evolution of collisional orogens. Journal of Metamorphic Geology, 17, 349366.CrossRefGoogle Scholar
Icenhower, J. and London, D. (1995) An experimental study of element partitioning among biotite, muscovite and coexisting peraluminous silicic melt at 200 MPa (H2O). American Mineralogist, 80, 12291251.CrossRefGoogle Scholar
Icenhower, J. and London, D. (1996) Experimental partitioning of Rb, Cs, Sr and Ba between alkali feldspar and peraluminous melt. American Mineralogist, 81, 719734.CrossRefGoogle Scholar
Inger, S. (1998) Timing of an extensional detachment during convergent orogeny: New Rb-Sr geochrono-logical data from the Zanskar shear zone, north-western Himalaya. Geology, 26, 223226.2.3.CO;2>CrossRefGoogle Scholar
Inger, S. and Harris, N. (1992) Tectonothermal evolution of the High Himalayan Crystalline Sequence, Langtang Valley, northern Nepal. Journal of Metamorphic Geology, 10, 439452.CrossRefGoogle Scholar
Inger, S. and Harris, N. (1993) Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya. Journal of Petrology, 34, 345368.CrossRefGoogle Scholar
Jamieson, R.A, Beaumont, C., Fullsack, P. and Lee, B. (1998) Barrovian regional metamorphism: where's the heat? Pp. 2351 in: What Drives Metamorphism and Metamorphic Reactions. (Treloar, P.J. and O'Brien, P.J., editors). Special Publication, 138. Geological Society, London.Google Scholar
Jaupart, C. and Provost, A. (1985) Heat focussing, granite genesis and inverted metamorphic gradients in continental collision zones. Earth and Planetary Science Letters, 73, 385397.CrossRefGoogle Scholar
Johannes, W. and Holtz, F. (1996) Petrogenesis and Experimental Petrology of Granitic Rocks. Springer-Verlag, Heidelberg.CrossRefGoogle Scholar
Kerrick, D.M. (1972) Experimental determination of muscovite and quartz stability with PH2O < Ptotal . American Journal of Science, 272, 946958.CrossRefGoogle Scholar
Knesel, K.M. and Davidson, J.P. (1996) Isotopic disequilibrium during melting of granite and implications for crustal contamination of magmas. Geology, 24, 243246.2.3.CO;2>CrossRefGoogle Scholar
Knoche, R., Dingwell, D.B. and Webb, S.L. (1995) Leucogranitic and pegmatitic melt densities: partial molar volumes for SiO2, Al2O3, Na2O, K2O, Rb2O, Cs2O, Li2O, BaO, SrO, CaO, MgO, TiO2, B2O3, P2O3, F2O_b Ta2O3, Nb2O3 and WO3 . Geochimica et Cosmochimica Acta, 59, 46454652.CrossRefGoogle Scholar
Kretz, R. (1983) Symbols for rock-forming minerals. American Mineralogist, 68, 277279.Google Scholar
Lagache, M. and Carron, J.P. (1982) Zonation des éléments en traces au cours de la croissance des cristaux dans les bains silicatés: l’exemple de Rb, Cs, Sr et Ba dans le systeme Qz–Ab–Or–H2O. Geochimica et Cosmochimica Acta, 46, 21512158.CrossRefGoogle Scholar
Lange, R. A. (1994) The effect of H2O, CO2 and F on the density and viscosity of silicate melts. Pp. 331369 in: Volatiles in Magmas. (Carroll, M.R. and Holloway, J.R., editors). Reviews in Mineralogy, 30, Mineralogical Society of America, Washington, D.C. CrossRefGoogle Scholar
Lange, R.A.(1997) A revised model for the density and thermal expansivity of K2O-Na2O-CaO-MgO-Al2O3-SiO2 liquids from 700 to 1900 K; extension to crustal magmatic temperatures. Contributions to Mineralogy and Petrology, 30, 111.CrossRefGoogle Scholar
Le Breton, N. and Thompson, A.B. (1988) Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contributions to Mineralogy and Petrology, 99, 226237.CrossRefGoogle Scholar
Le Fort, P. (1975) Himalaya: the collided range. Present knowledge of the continental arc. American Journal of Science, 275, 144.Google Scholar
Le Fort, P., Cuney, M., Deniel, C., France-Lanord, C., Sheppard, S.M.F., Upreti, B.N. and Vidal, P. (1987) Crustal generation of the Himalayan leucogranites. Tectonophysics, 134, 3957.CrossRefGoogle Scholar
Lesher, C.E. (1990) Decoupling of chemical and isotopic exchange during magma mixing. Nature, 344, 235237.CrossRefGoogle Scholar
Long, P.E. (1978) Experimental determination of partition coefficients for Rb, Sr and Ba between alkali feldspar and silicate liquid. Geochimica et Cosmochimica Acta, 42, 833846.CrossRefGoogle Scholar
Luan, F.C. and Paterson, M.S. (1992) Preparation and deformation of synthetic aggregates of quartz. Journal of Geophysical Research, 97, 301320.CrossRefGoogle Scholar
MacFarlane, A.M. (1999) The metamorphic history of the crystalline rocks in the High Himalaya, Nepal: insights from thermobarometric data. Journal of Asian Earth Sciences, 17, 741753.CrossRefGoogle Scholar
Mahood, G. and Hildreth, W. (1983) Large partition coefficients for trace elements in high-silica rhyolites. Geochimica et Cosmochimica Acta, 47, 1130.CrossRefGoogle Scholar
McCaffrey, K.J.W. and Petford, N. (1997) Are granitic intrusions scale invariant? Journal of the Geological Society of London, 154, 14.CrossRefGoogle Scholar
Miller, R.B. and Paterson, S.R. (1999) In defense of magmatic diapirs. Journal of Structural Geology, 21, 11611173.CrossRefGoogle Scholar
Montel, J.M. (1993) A model for monazite/melt equilibrium and applications to the generation of granitic magmas. Chemical Geology, 110, 127146.CrossRefGoogle Scholar
Montel, J.M. and Vielzeuf, D. (1997) Partial melting of greywackes, Part 2: Compositions of minerals and melts. Contributions to Mineralogy and Petrology, 128, 176196.CrossRefGoogle Scholar
Moore, M. A. and England, P.C. (2001) On the inference of denudation rates from cooling ages of minerals. Earth and Planetary Science Letters, 185, 265284.CrossRefGoogle Scholar
Murphy, M.A. and Harrison, T.M. (1999) Relationship between leucogranites and the Qomolangma detachment in the Rongbuk Valley, south Tibet. Geology, 27, 679682.2.3.CO;2>CrossRefGoogle Scholar
Nash, W.P. and Crecraft, H.R. (1985) Partition coefficients for trace elements in silicic magmas. Geochimica et Cosmochimica Acta, 49, 23092322.CrossRefGoogle Scholar
Noble, S.R. and Searle, M.P. (1995) Age of crustal melting and leucogranite formation from U-Pb zircon and monazite dating in the western Himalaya, Zanskar, India. Geology, 23, 11351138.2.3.CO;2>CrossRefGoogle Scholar
Ochs, F.A. III and Lange, R.A. (1997) The partial molar volume, thermal expansivity, and compressibility of H2O in NaAlSi3O8 liquid; new measurements and an internally consistent model. Contributions to Mineralogy and Petrology, 129, 155165.CrossRefGoogle Scholar
Patiño-Douce, A.E. and Beard, J.S. (1995) Dehydration melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. Journal of Petrology, 36, 707738.CrossRefGoogle Scholar
Patiño-Douce, A.E. and Beard, J.S. (1996) Effects of P, f(O2) and Mg/Fe ratio on dehydration melting of model greywackes. Journal of Petrology, 37, 9991024.CrossRefGoogle Scholar
Patiño-Douce, A.E. and Harris, N.B.W. (1998) Experimental constraints on Himalayan anatexis. Journal of Petrology, 39, 689710.CrossRefGoogle Scholar
Patiño-Douce, A.E. and Johnston, A.D. (1991) Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contributions to Mineralogy and Petrology, 107, 202218.CrossRefGoogle Scholar
Patiño-Douce, A.E. and McCarthy, T.C. (1998) Melting of crustal rocks during continental collision and subduction. Pp. 2755 in: When Continents Collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rock. (Hacker, B.R. and Liou, J.G., editors). Kluwer Academic Publishers, Netherlands.CrossRefGoogle Scholar
Patiño-Douce, A.E., Humphreys, E.D. and Johnston, A.D. (1990) Anatexis and metamorphism in tectonically thickened continental crust exemplified by the Sevier hinterland, western North America. Earth and Planetary Science Letters, 97, 290315.CrossRefGoogle Scholar
Patterson, S. and Vernon, R.H. (1995) Bursting the bubble of ballooning plutons: a return to nested diapirs emplaced by multiple processes. Geological Society of America Bulletin, 107, 13561380.2.3.CO;2>CrossRefGoogle Scholar
Petford, N. (1996) Dykes or diapirs? Transactions of the Royal Society of Edinburgh: Earth Science, 87, 105114.CrossRefGoogle Scholar
Petford, N, Lister, J.R. and Kerr, R.C. (1993) Dike transport of granitoid magmas. Geology, 21, 845848.2.3.CO;2>CrossRefGoogle Scholar
Petford, N., Cruden, A.R., McCaffrey, KJ.W. and Vigneresse, J.-L. (2000) Granite magma formation, transport and emplacement in the Earth's crust. Nature, 408, 669673.CrossRefGoogle ScholarPubMed
Petö, P. (1976) An experimental investigation of melting relations involving muscovite and paragonite in the silica-saturated portion of the system K2O-Na2O-Al2O3-SiO2-H2O to 15 kbar total pressure. Pp. 4145 in: Progress in Experimental Petrology, 3rd Report, NERC, London.Google Scholar
Pickering, J.M. and Johnston, A.D. (1998) Fluid-absent melting behavior of a two-mica metapelite; experimental constraints on the origin of Black Hills Granite. Journal of Petrology, 39, 17871804.CrossRefGoogle Scholar
Pressley, R.A. and Brown, M. 1999. The Phillips pluton, Maine, USA: evidence of heterogeneous crustal sources and implications for granite ascent and emplacement mechanisms in convergent orogens. Lithos, 46, 335366.CrossRefGoogle Scholar
Prince, C., Harris, N. and Vance, D. (2001) Fluid-enhanced melting during prograde metamorphism. Journal of the Geological Society of London, 158, 233241.CrossRefGoogle Scholar
Rapp, R.P. and Watson, E.B. (1986) Monazite solubility and dissolution kinetics; implications for the thorium and light rare earth chemistry of felsic magmas. Contributions to Mineralogy and Petrology, 94, 304316.CrossRefGoogle Scholar
Rowley, D.B. (1996) Age of initiation of collision between India and Asia: a review of stratigraphic data. Earth and Planetary Science Letters, 145, 113.CrossRefGoogle Scholar
Royden, L. (1993) The steady-state thermal structure of eroding orogenic belts and accretionary prisms. Journal of Geophysical Research, 98, 44874507.CrossRefGoogle Scholar
Rubie, D.C. and Brearley, A.J. (1990) A model for rates of disequilibrium melting during metamorphism. Pp. 5786 in: High-temperature Metamorphism and Crustal Anatexis. (Ashworth, J.R. and Brown, M., editors). Mineralogical Society Series, 2. Unwin-Hyman, London.CrossRefGoogle Scholar
Rushmer, T. (1995) An experimental deformation study of partially molten amphibolite: application to low-fraction melt segregation. Journal of Geophysical Research, 100, 1568115696.CrossRefGoogle Scholar
Rushmer, T., Brown, M. and Bergantz, G. (1998) Penrose conference report: processes of crustal differentiation, crust-mantle inter-actions, melting and granite migration through the crust. Geological Society of America Today, 8, 1821.Google Scholar
Rutter, E.H. (1997) The influence of deformation on the extraction of crustal melts: a consideration of the role of melt–assisted granular flow. Pp. 82110 in: Deformation-enhanced Fluid Transport in the Earth's Crust and Mantle. (Holness, M., editor). Mineralogical Society Series, 8. Chapman & Hall, London.Google Scholar
Rutter, E.H. and Neumann, D.H.K. (1995) Experimental deformation of partially molten Westerly granite under fluid-absent conditions with implications for the extraction of granitic magmas. Journal of Geophysical Research, 100, 1569715715.CrossRefGoogle Scholar
Scaillet, B., France-Lanord, C. and Le Fort, P. (1990) Badrinath-Gangotri plutons (Garwhal, India): Petrological and geochemical evidence for fractionation processes in a High Himalayan leucogranite. Journal of Volcanology and Geothermal Research, 44, 163188.CrossRefGoogle Scholar
Scaillet, B., Pichavant, M. and Roux, J. (1995 a) Experimental crystallisation of leucogranite magmas. Journal of Petrology, 36, 664706.CrossRefGoogle Scholar
Scaillet, B., Pêcher, A., Rochette, P. and Champenois, M. (1995 b) The Gangotri granite (Garwhal Himalaya): Laccolithic emplacement in an extending collisional belt. Journal of Geophysical Research, 100, 585607.CrossRefGoogle Scholar
Scaillet, B., Holtz, E., Pichavant, M. and Schmidt, M. (1996) Viscosity of Himalayan leucogranites: implications for mechanisms of granitic magma ascent. Journal of Geophysical Research, 101, 2769127699.CrossRefGoogle Scholar
Scaillet, B., Holtz, F. and Pichavant, M. (1997) Rheological properties of granitic magmas in their crystallization range. Pp. 1129 in: Granite: From Segregation of Melt to Emplacement Fabric. (Bouchez, J.L., Hutton, D.H.W. and Stephens, W.E., editors). Kluwer, Netherlands.CrossRefGoogle Scholar
Schärer, U, Xu, R.H. and Allegre, C.J. (1986) U-(Th)-Pb systematics and ages of Himalayan leucogranites. Earth and Planetary Science Letters, 77, 3548.CrossRefGoogle Scholar
Schneider, D.A., Edwards, M.A., Zeitler, P.K. and Coath, C.D. (1999 a) Mazeno Pass Pluton and Jutial Granite, Pakistan Himalaya: Age and implications for entrapment mechanisms of two granites in the Himalaya. Contributions to Mineralogy and Petrology, 136, 273284.CrossRefGoogle Scholar
Schneider, D.A, Edwards, M.A., Kidd, W.S.F., Zeitler, P.K. and Coath, C.D. (1999 b). Early Miocene anatexis identified in the western syntaxis, Pakistan Himalaya. Earth and Planetary Science Letters, 167, 121129.CrossRefGoogle Scholar
Schneider, D.A., Edwards, M.A., Kidd, W.S.F., Khan, M.A, Seeber, L. and Zeitler, P.K. (1999 c) Tectonics of Nanga Parbat, western Himalaya: Synkinematic plutonism within the doubly vergent shear zones of a crustal-scale pop-up structure. Geology, 27, 9991002.2.3.CO;2>CrossRefGoogle Scholar
Schulze, F., Behrens, H., Holtz, F., Roux, J. and Johannes, W. (1996) The influence of H2O on the viscosity of a haplogranitic melt. American Mineralogist, 81, 11551165.CrossRefGoogle Scholar
Searle, M.P. (1999) Emplacement of Himalayan leucogranites by magma injection along giant sill complexes: examples from the Cho Oyu, Gyachunmg Kang and Everest leucogranites (Nepal Himalaya). Journal of Asian Earth Sciences, 17, 773783.CrossRefGoogle Scholar
Searle, M.P. and Rex, A.J. (1989) Thermal model for the Zanskar Himalaya. Journal of Metamorphic Geology, 7, 127134.CrossRefGoogle Scholar
Searle, M.P., Parrish, R.R, Hodges, K.V., Hurford, AJ., Ayres, M.W. and Whitehouse, M.J. (1997) Shisha Pangma leucogranite, South Tibetan Himalaya: field relations, geochemistry, age, origin and emplacement. Journal of Geology, 105, 295317.CrossRefGoogle Scholar
Searle, M.P., Noble, S.R., Hurford, A.J. and Rex, D.C. (1999) Age of crustal melting, emplacement and exhumation history of the Shivling leucogranite, Garhwal Himalaya. Geological Magazine, 136, 513525.CrossRefGoogle Scholar
Stephenson, B.J., Searle, M.P., Waters, D.J. and Rex, D.C. (2001) Structure of the Main Central Thrust zone and extrusion of the High Himalayan deep crustal wedge, Kishtwar-Zanskar Himalaya. Journal of the Geological Society of London, 158, 637652.CrossRefGoogle Scholar
Stevens, G., Clemens, J.D. and Droop, G.T.R. (1997) Melt production during granulite facies anatexis: experimental data from ‘primitive’ metasedimentary protoliths. Contributions to Mineralogy and Petrology, 128, 352370.CrossRefGoogle Scholar
Thompson, A.B. and Algor, J.R. (1977) Model systems for anatexis of pelitic rocks. 1. Theory of melting reactions in the system KalO2NaAlO2 Al2O3-SiO2-H2O. Contributions to Mineralogy and Petrology, 63, 247269.CrossRefGoogle Scholar
Thompson, A.B. and England, P.C. (1984) Pressure-temperature-time paths of regional metamorphism; II, Their inference and interpretation using mineral assemblages in metamorphic rocks. Journal of Petrology, 25, 929955.CrossRefGoogle Scholar
Thompson, A.B. and Tracy, R.J. (1979) Model systems for anatexis of pelitic rocks. 2. Facies series melting and reactions in the system CaO-KAlO2NaAlO2Al2O3-SiO2H2O. Contributions to Mineralogy and Petrology, 70, 429438.CrossRefGoogle Scholar
Treloar, P.J., George, M.T. and Whittington, A.G. (2000 a) Mafic sheets from Indian Plate gneisses in the Nanga Parbat syntaxis: their significance in dating crustal growth and metamorphic and deformation events. Pp. 2550 in: Tectonics of the Nanga Parbat Syntaxis and the Western Himalay. (Khan, M.A., Treloar, P.J., Searle, M.P. and Jan, M.Q., editors). Special Publication, 170. Geological Society, London.Google Scholar
Treloar, P.J., Rex, D.C, Guise, P.G., Wheeler, J. and Hurford, A. (2000 b) Geochronological constraints on the evolution of the Nanga Parbat syntaxis, Pakistan Himalaya. Pp. 137162 in: Tectonics of the Nanga Parbat Syntaxis and the Western Himalay. (Khan, M.A., Treloar, P.J., Searle, M.P. and Jan, M.Q., editors). Special Publication, 170. Geological Society, London.Google Scholar
Van der Laan, S., Zhang, Y., Kennedy, A.K. and Wyllie, P.J. (1994) Comparison of element and isotope diffusion of K and Ca in multicomponent silicate melts. Earth and Planetary Science Letters, 123, 155166.CrossRefGoogle Scholar
Vance, D. and Harris, N. (1999) The timing of prograde metamorphism in the Zanskar Himalaya. Geology, 27, 395398.2.3.CO;2>CrossRefGoogle Scholar
Vance, D., Ayres, M.W., Kelley, S.P. and Harris, N. (1998) The thermal response of a metamorphic belt to extension: constraints on laser Ar data on metamorphic micas. Earth and Planetary Science Letters, 162, 153164.CrossRefGoogle Scholar
Vanderhaeghe, O. and Teyssier, C. (2001) Crustal–scale rheological transitions during late-orogenic collapse. Tectonophysics, 335, 211228.CrossRefGoogle Scholar
Vannay, J.C. and Grasemann, B. (2001) Himalayan inverted metamorphism and syn–convergence extension as a consequence of a general shear extrusion. Geological Magazine, 138, 253276.CrossRefGoogle Scholar
Vannay, J.C. and Hodges, K.V. (1996) Tectono-metamorphic evolution of the Himalayan metamorphic core between Annapurna and Dhaulagiri, central Nepal. Journal of Metamorphic Geology, 14, 635656.CrossRefGoogle Scholar
Vielzeuf, D. and Clemens, J.D. (1992) The fluid-absent melting of phlogopite + quartz: experiments and models. American Mineralogist, 77, 12061222.Google Scholar
Vielzeuf, D. and Holloway, J.R. (1988) Experimental determination of the fluid-absent melting relations in the pelitic system. Consequences for crustal differentiation. Contributions to Mineralogy and Petrology, 98, 257276.CrossRefGoogle Scholar
Vielzeuf, D. and Montel, J.M. (1994) Partial melting of greywackes. Part 1. Fluid-absent experiments and phase relationships. Contributions to Mineralogy and Petrology, 117, 375393.CrossRefGoogle Scholar
Vince, K.J. and Treloar, P.J. (1996) Miocene, north-vergent extensional displacements along the Main Mantle Thrust, NW Himalaya, Pakistan. Journal of the Geological Society, London, 153, 677680.CrossRefGoogle Scholar
Watson, E.B. (1996) Dissolution, growth and survival of zircons during crustal fusion: kinetic principles, geological models and implications for isotopic inheritance. Transactions of the Royal Society of Edinburgh: Earth Sciences, 87, 4356.CrossRefGoogle Scholar
Watson, E.B. and Harrison, T.M. (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64, 295304.CrossRefGoogle Scholar
Watson, E.B., Harrison, T.M. and Ryerson, F.J. (1985) Diffusion of Sm, Sr and Pb in fiuorapatite. Geochimica et Cosmochimica Acta, 49, 18131823.CrossRefGoogle Scholar
Watson, E.B., Vicenzi, E.P. and Rapp, R.P. (1989) Inclusion/host relations involving accessory minerals in high-grade metamorphic and anatectic rocks. Contributions to Mineralogy and Petrology, 101, 220231.CrossRefGoogle Scholar
Watt, G.R. and Harley, S.L. (1993) Accessory phase controls on the geochemistry of crustal melts and restites produced by dehydration melting. Contributions to Mineralogy and Petrology, 114, 550566.CrossRefGoogle Scholar
Watt, G.R, Oliver, N.H.S. and Griffin, B.J. (2000) Evidence for reaction-induced microfracturing in granulite facies migmatites. Geology, 28, 327330.2.0.CO;2>CrossRefGoogle Scholar
Weinberg, R. (1996) The ascent mechanism of felsic magmas: news and views. Transactions of the Royal Society of Edinburgh: Earth Science, 87, 95103.CrossRefGoogle Scholar
Weinberg, R. and Podladchikov, Y.Y. (1994) Diapiric ascent of magmas through power law crust and mantle. Journal of Geophysical Research, 99, 95439559.CrossRefGoogle Scholar
Wheeler, J., Treloar, P.J. and Potts, G.J. (1995) Structural and metamorphic evoLution of the Nanga Parbat syntaxis, Pakistan Himalayas, on the Indus gorge transect: the importance of early evEnts. Geological Journal, 30, 349371.CrossRefGoogle Scholar
Whitney, J.A. (1988) The origin of granite: the role and source of water in the evolution of granitic magmas. Geological Society of America Bulletin, 100, 18861897.2.3.CO;2>CrossRefGoogle Scholar
Whittington, A.G. (1996) Exhumation overrated at Nanga Parbat, northern Pakistan. Tectonophysics, 260, 215226.CrossRefGoogle Scholar
Whittington, A.G., Harris, N.B.W. and Baker, J. (1998) Low-pressure crustal anatexis: the significance of spinel and cordierite from metapelitic assemblages at Nanga Parbat, northern Pakistan. Pp. 183198 in: What Drives Metamorphism and Metamorphic Reactions. (Treloar, P.J. and O'Bren, P.J., editors). Special Publication, 138. Geological Society, London.Google Scholar
Whittington, A.G., Foster, G., Harris, N.B.W., Vance, D. and Ayres, M.W. (1999 a) Lithostratigraphic correlations in the western Himalaya – an isotopic approach. Geology, 27, 585588.2.3.CO;2>CrossRefGoogle Scholar
Whittington, A.G., Harris, N.B.W. and Butler, R.W.H. (1999 b) Contrasting anatectic styles at Nanga Parbat, northern Pakistan. Geological Society of America Special Paper, 328, 129144.Google Scholar
Whittington, A., Scaillet, B., Holtz, F., Behrens, H. and Richet, P. (1999 c) An experimental temperature-viscosity-X(H2O) grid for Himalayan leucogranite melts. Abstracts, 14th Himalaya-Karakoram-Tibet workshop. Terra Nostra, 99/2, 171172.Google Scholar
Willett, S., Beaumont, C. and Fullsack, P. (1993) Mechanical model for the tectonics of doubly vergent compressional orogens. Geology, 21, 371374.2.3.CO;2>CrossRefGoogle Scholar
Winslow, D.M., Zeitler, P.K, Chamberlain, C.P. and Hollister, L.S. (1994) Direct evidence for a steep geotherm under conditions of rapid denudation, Western Himalaya, Pakistan. Geology, 22, 10751078.2.3.CO;2>CrossRefGoogle Scholar
Winslow, D.M., Chamberlain, C.P. and Zeitler, P.K. (1995) Metamorphism and melting of the lithosphere due to rapid denudation, Nanga Parbat Massif Himalaya. Journal of Geology, 103, 395409.CrossRefGoogle Scholar
Winslow, D.M., Zeitler, P.K., Chamberlain, C.P. and Williams, I.S. (1996) Geochronological constraints on syntaxial development in the Nanga Parbat region, Pakistan. Tectonics, 15, 12921308.CrossRefGoogle Scholar
Wood, B.J. and Fraser, D.G. (1977) Equilibrium Thermodynamics for Geologists. Oxford University Press, Oxford.Google Scholar
Zeitler, P.K. (1985) Cooling history of the NW Himalaya, Pakistan. Tectonics, 4, 127151.CrossRefGoogle Scholar
Zeitler, P.K. and Chamberlain, C.P. (1991) Petrogenetic and tectonic significance of young leucogranites from the northwestern Himalaya, Pakistan. Tectonics, 10, 729741.CrossRefGoogle Scholar
Zeitler, P.K., Johnson, N.M., Naeser, C.M. and Tahirkheli, R.A.K. (1982) Fission-track evidence for Quaternary uplift of the Nanga Parbat region, Pakistan. Nature, 298, 255257.CrossRefGoogle Scholar
Zeitler, P.K., Chamberlain, C.P. and Smith, H.A. (1993) Synchronous anatexis, metamorphism, and rapid denudation at Nanga Parbat (Pakistan Himalaya). Geology, 21, 347350.2.3.CO;2>CrossRefGoogle Scholar
Zeitler, P.K, Koons, P.O., Bishop, M.P., Chamberlain, C.P., Craw, D., Edwards, M.A, Hamidullah, S., Jan, M.Q., Khan, M.A, Khattak, M.U.K, Kidd, W.S.F., Mackie, R.L., Meltzer, A.S., Park, S.K, Pecher, A, Poage, M.A, Sarker, G., Schneider, D.A., Seeber, L. and Shroder, J.F. (2001) Crustal reworking at Nanga Parbat, Pakistan: Metamorphic consequences of thermal-mechanical coupling facilitated by erosion. Tectonics, 20, 712728.CrossRefGoogle Scholar
Zen, E. (1988) Thermal modelling of stepwise anatexis in a thrust-thickened sialic crust. Transactions of the Royal Society of Edinburgh: Earth Science, 79, 223235.CrossRefGoogle Scholar