Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-19T15:58:34.160Z Has data issue: false hasContentIssue false

Carbon dioxide in pollucite, a feldspathoid with the ideal composition (Cs, Na)16Al16Si32O96·nH2O

Published online by Cambridge University Press:  05 July 2018

F. Bellatreccia*
Affiliation:
Dipartimento di Scienze Geologiche, Università Roma Tre, Largo S. Leonardo Murialdo 1, I-00146 Roma, Italy LNF-INFN, Via E. Fermi 40, I-00044 Frascati, Rome, Italy
G. Della Ventura
Affiliation:
Dipartimento di Scienze Geologiche, Università Roma Tre, Largo S. Leonardo Murialdo 1, I-00146 Roma, Italy LNF-INFN, Via E. Fermi 40, I-00044 Frascati, Rome, Italy
G. D. Gatta
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23, I-20133 Milano, Italy
M. Cestelli Guidi
Affiliation:
LNF-INFN, Via E. Fermi 40, I-00044 Frascati, Rome, Italy
S. Harley
Affiliation:
School of GeoSciences, University of Edinburgh, Kings Buildings, West Mains Road, Edinburgh EH9 3JW, UK

Abstract

We report a single-crystal Fourier-transform infrared (FTIR) study of a sample of pollucite from Maine, USA. Prior to our work, the sample had been characterized by single-crystal X-ray diffraction, neutron diffraction and electron-probe microanalysis. It is cubic Ia3d, with a crystal-chemical formula Na1.93(Cs10.48Rb0.31K0.04)Σ=10.83(Al14.45Si33.97)Σ=48.42O96·3.92H2O, and an H2O content, determined by thermogravimetric analysis, of 1.6 wt.%. The single-crystal FTIR spectrum has a doublet of intense bands at 3670 and 3589 cm–1, which are assigned to the ν3 and ν1 stretching modes of the H2O molecule, respectively. A very intense and sharp peak at 1620 cm–1 is assigned to the ν2 bending vibration. In the near-infrared region there is a relatively intense peak at 5270 cm–1, which is assigned to a combination (ν2 + ν3) mode of H2O, and a weak but well defined doublet at 7118 and 6831 cm–1, which is assigned to the first overtones of the fundamental stretching modes. A relatively weak but extremely sharp peak at 2348 cm–1 shows that the pollucite contains CO2 molecules in structural cavities. Mapping the sample using FTIR indicates that both H2O and CO2 are homogeneously distributed. Secondary ion mass spectrometry yielded an average CO2 content of 0.09±0.02 wt.%. On the basis of this value, we determined the integrated molar absorption coefficient for the spectroscopic analysis of CO2 in pollucite to be εiCO2 = 11,000±3000 l mol–1 cm–2; the linear molar absorption coefficient for the same integration range is εlCO2 = 1600±500 l mol–1 cm–1.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aines, R.D. and Rossman, G.R. (1984) The high temperature behaviour of water and carbon dioxide in cordierite and beryl. American Mineralogist, 69, 319327.Google Scholar
Armbruster, T. and Gunter, M.E. (2001) Crystal Structures of Natural Zeolites. Pp. 157 in: Natural Zeolites: Occurrence, Properties, Applications (Bish, D.L. and Ming, D.W., editors). Reviews in Mineralogy and Geochemistry, 45. Mineralogical Society of America, Washington DC and the Geochemical Society, St Louis, Missouri, USA.Google Scholar
Baerlocher, Ch., Meier, W.M. and Olson, D.H. (2001) Atlas of Zeolite Framework Types, fifth edition. Elsevier, Amsterdam, 302 pp.Google Scholar
Balassone, G, Beran, A., Fameli, G, Amalfitano, C. and Petti, C. (2006) The hydrous component in leucite from Somma—Vesuvius and Roccamonfina volcanoes (southern Italy)—a FTIR spectroscopic investigation. Neues Jahrbuch fur Mineralogie Abhandlungen, 182, 149156.CrossRefGoogle Scholar
Behrens, H., Tamic, N. and Holtz, F. (2004) Determination of the molar absorption coefficient for the infrared absorption band of CO2 in rhyolitic glasses. American Mineralogist, 89, 301306.CrossRefGoogle Scholar
Bellatreccia, F., Della Ventura, G, Piccinini, M., Cavallo, A. and Brilli, M. (2009) H2O and CO2 in minerals of the hauyine—sodalite group: an FTIR spectroscopic study. Mineralogical Magazine, 73, 399423.CrossRefGoogle Scholar
Beran, A. and Rossman, R. (1989) The water content of nepheline. Mineralogy and Petrology, 40, 235240.CrossRefGoogle Scholar
Blank, J.G, Stolper, E.M. and Carroll, M.R (1993) Solubilities of carbon dioxide and water in rhyolitic melt at 850°C and 750 bars. Earth and Planetary Science Letters, 119, 2736.CrossRefGoogle Scholar
Callegari, A.M., Boiocchi, M., Bellatreccia, F., Caprilli, E., Medenbach, O. and Cavallo, A. (2011) Capranicaite, KCaNaAl4B4Si2O18: a new inosilicate from Capranica, Italy, with a peculiar topology of the two-periodic single chain [Si2O6]. Mineralogical Magazine, 75, 3343.CrossRefGoogle Scholar
Della Ventura, G, Bellatreccia, F. and Bonaccorsi, E. (2005) CO2 in cancrinite—sodalite group minerals: pitiglianoite. European Journal of Mineralogy, 17, 847851.CrossRefGoogle Scholar
Della Ventura, G, Bellatreccia, F., Parodi, G.C., Camara, F. and Piccinini, M. (2007) Single-crystal FTIR and X-ray study of vishnevite, ideally [Na6(SO4)][Na2(H2O)2](Si6Al6O24). American Mineralogist, 92, 713721.CrossRefGoogle Scholar
Della Ventura, G, Bellatreccia, F. and Piccinini, M. (2008) Presence and zoning of hydrous components in leucite from the Albani Hills volcano (Rome, Italy). American Mineralogist, 93, 15381544.CrossRefGoogle Scholar
Della Ventura, G, Bellatreccia, F., Cesare, B., Harley, S. and Piccinini, M. (2009) FTIR microspectroscopy and SIMS study of water-poor cordierite from El Hoyazo, Spain: application mineral and melt devolatilization. Lithos, 113, 498506.CrossRefGoogle Scholar
Della Ventura, G, Bellatreccia, F., Marcelli, A., Cestelli Guidi, M., Piccinini, M., Cavallo, A. and Piochi, M. (2010) FTIR imaging in earth sciences. Analytical and Bioanalytical Chemistry, 397, 20392049.CrossRefGoogle ScholarPubMed
Fine, G.J. and Stolper, E.M. (1985) The speciation of carbon dioxide in sodium aluminosilicate glasses. Contributions to Mineralogy and Petrology, 91, 105121.CrossRefGoogle Scholar
Gatta, G.D., Nestola, F. and Boffa Ballaran, T. (2006) Elastic behavior, phase transition and pressure induced structural evolution of analcime. American Mineralogist, 91, 568578.CrossRefGoogle Scholar
Gatta, G.D., Rotiroti, N, Boffa Ballaran, T. and Pavese, A. (2008a) Leucite at high-pressure: elastic behaviour, phase stability and petrological implications. American Mineralogist, 93, 15881596.CrossRefGoogle Scholar
Gatta, G.D., Rotiroti, N, Fisch, M., Kadiyski, M. and Armbruster, T. (2008b) Stability at high-pressure, elastic behaviour and pressure-induced structural evolution of CsAlSi5O12, a potential nuclear waste disposal phase. Physics and Chemistry of Minerals, 35, 521533.CrossRefGoogle Scholar
Gatta, G.D., Rinaldi, R., McIntyre, G.J., Nenert G, Bellatreccia, F., Guastoni, A. and Della Ventura, G. (2009a) On the crystal structure and crystal chemistry of pollucite, (Cs,Na)16Al16Si32O9(5-;!H2O: a natural microporous material of interest in nuclear technology. American Mineralogist, 94, 15601568.CrossRefGoogle Scholar
Gatta, G.D., Rotiroti, N., Boffa Ballaran, T., Sanchez Valle, C. and Pavese, A. (2009b) Elastic behavior and phase-stability of pollucite, a potential host for nuclear waste. American Mineralogist, 94, 11371143.CrossRefGoogle Scholar
Goldman, D.S., Rossman, G.R. and Dollase, W.A. (1977) Channel constituents in cordierite. American Mineralogist, 62, 11441157.Google Scholar
Gottardi, G. and Galli, E. (1985) Natural Zeolites. Springer-Verlag, Berlin, Germany, 409 pp.CrossRefGoogle Scholar
Harley, S.L. and Carrington, D.P. (2001) The distribution of H2O between cordierite and granitic melt: improved calibration of H2O incorporation in cordierite and its application to high-grade meta-morphism and crustal anatexis. Journal of Petrology, 42, 15951620.CrossRefGoogle Scholar
Harley, S.L., Thompson, P., Hensen, B.J. and Buick, I.S. (2002) Cordierite as a sensor of fluid conditions in high-grade metamorphism and crustal anatexis. Journal of Metamorphic Geology, 20, 7186.CrossRefGoogle Scholar
Ihinger, P.D., Hervig, R.L. and McMillan, P.F. (1994) Analytical methods for volatiles in glasses. Pp. 67121 in: Volatiles in Magmas (Carroll, M.R. and Holloway, J.R., editors). Reviews in Mineralogy, 30. Mineralogical Society of America, Washington DC.CrossRefGoogle Scholar
Johnson, EA. and Rossman, G.R. (2003) The con-centration and speciation of hydrogen in feldspars using FTIR and 1H MAS NMR spectroscopy. American Mineralogist, 88, 901911.CrossRefGoogle Scholar
Kobayashi, H., Yanase, I. and Mitamura, T. (1997) A new model for the pollucite thermal expansion mechanism. Journal of the American Ceramic Society, 80, 21612164.CrossRefGoogle Scholar
Kobayashi, H., Sumino, S., Tamai, S. and Yanase, I. (2006) Phase transition and lattice thermal expansion of Cs-deficient pollucite, Cs1_xAl1_xSi2+xO6(x40.25), compounds. Journal of the American Ceramic Society, 89, 31573161.CrossRefGoogle Scholar
Kolesov, BA. and Geiger, C.A. (2000) Cordierite II: the role of CO2 and H2O. American Mineralogist, 85, 12651274.CrossRefGoogle Scholar
Kolesov, BA. and Geiger, C.A. (2003). Molecules in the SiO2-clathrate melanophlogite: a single-crystal Raman study. American Mineralogist, 88, 13641368.CrossRefGoogle Scholar
Khomenko, V.M. and Langer, K (2005) Carbon oxides in cordierite channels: determination of CO2 isotopic species and CO by single crystal IR spectroscopy. American Mineralogist, 90, 19131917.CrossRefGoogle Scholar
Libowitzky, E. and Rossman, G.R. (1996). Principles of quantitative absorbance measurements in anisotropic crystals. Physics and Chemistry of Minerals, 23, 319327.CrossRefGoogle Scholar
Libowitzky, E. and Rossman, G.R. (1997). An IR absorption calibration for water in minerals. American Mineralogist, 82, 11111115.CrossRefGoogle Scholar
Mandeville, C.W., Webster, J.D., Rutherford, M.J., Taylor, B.E., Timbal, A. and Faure, K (2002) Determination of molar absorptivities for infrared absorption bands of H2O in andesitic glasses. American Mineralogist, 87, 813821.CrossRefGoogle Scholar
Morizet, Y., Brooker, RA. and Kohn, S.C. (2002) CO2in haplo-phonolite melt: solubility, speciation and carbonate complexation. Geochimica et Cosmochimica Acta, 66, 18091820.CrossRefGoogle Scholar
Paterson, M.S. (1982) The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials. Bulletin de Mineralogie, 105, 2022.CrossRefGoogle Scholar
Stolper, E.M. (1982) Water in silicate glasses: an infrared spectroscopic study. Contributions to Mineralogy and Petrology, 81, 117.CrossRefGoogle Scholar
Thompson, P., Harley, S.L. and Carrington, D.P. (2001) The distribution of H2O-CO2 between cordierite and granitic melt under fluid-saturated conditions at 5 kbar and 900°C. Contributions to Mineralogy and Petrology, 142, 107118.CrossRefGoogle Scholar
Wood, D.L. and Nassau, K (1967) Infrared spectra of foreign molecules in beryl. Journal of Chemical Physics, 47, 22202228.CrossRefGoogle Scholar
Wood, D.L. and Nassau, K (1968) The characterization of beryl and emerald by visible and infrared absorption spectroscopy. American Mineralogist, 53, 777800.Google Scholar
Yanase, I., Kobayashi, H, Shibasaki, Y. and Mitamura, T. (1997) Tetragonal—cubic structural phase transition in pollucite by low-temperature X-ray powder diffraction. Journal of the American Ceramic Society, 80, 26932695.CrossRefGoogle Scholar
Zhang, M., Wang, L., Hirai, S., Redfern, S.A.T. and Salje, E.K.D. (2005) Dehydroxylation and CO2incorporation in annealed mica (sericite): an infrared spectroscopic study. American Mineralogist, 90, 173180.CrossRefGoogle Scholar