Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-16T12:15:49.562Z Has data issue: false hasContentIssue false

Albertiniite, Fe2+(SO3)·3H2O, a new sulfite mineral species from the Monte Falò Pb-Zn mine, Coiromonte, Armeno Municipality, Verbano Cusio Ossola Province, Piedmont, Italy

Published online by Cambridge University Press:  02 January 2018

P. Vignola*
Affiliation:
CNR-Istituto per la Dinamica dei Processi Ambientali, via Botticelli 23, I-20133, Milano, Italy Dipartimento di Scienze della Terra “A. Desio”, Università degli Studi di Milano, via Botticelli 23, I-20133 Milano, Italy
G. D. Gatta
Affiliation:
Dipartimento di Scienze della Terra “A. Desio”, Università degli Studi di Milano, via Botticelli 23, I-20133 Milano, Italy
N. Rotiroti
Affiliation:
Dipartimento di Scienze della Terra “A. Desio”, Università degli Studi di Milano, via Botticelli 23, I-20133 Milano, Italy
P. Gentile
Affiliation:
Dipartimento di Scienze dell’Ambiente e del Territorio e di Scienze della Terra, UniversitàMilano-Bicocca, Piazzale della Scienza 4-building U4, I-20126 Milano, Italy
F. Hatert
Affiliation:
Laboratoire de Minéralogie, Département de Géologie, Université de Liège, Bâtiment B18, Sart Tilman, B-4000 Liège, Belgium
M. Baijot
Affiliation:
Laboratoire de Minéralogie, Département de Géologie, Université de Liège, Bâtiment B18, Sart Tilman, B-4000 Liège, Belgium
D. Bersani
Affiliation:
Dipartimento di Fisica e Scienze della Terra, Università di Parma, Viale G.P. Usberti 7/a, I-43124 Parma, Italy
A. Risplendente
Affiliation:
Dipartimento di Scienze della Terra “A. Desio”, Università degli Studi di Milano, via Botticelli 23, I-20133 Milano, Italy
A. Pavese
Affiliation:
Dipartimento di Scienze della Terra “A. Desio”, Università degli Studi di Milano, via Botticelli 23, I-20133 Milano, Italy

Abstract

Albertiniite, Fe2+(SO3)·3H2O, is a new Fe2+ sulfite trihydrate, related chemically to gravegliaite. It occurs at the Monte Falò Pb-Zn mine near Coiromonte, in the Armeno Municipality, Verbano–Cusio–Ossola Province, Italy. It is an intermediate product of oxidation between iron sulfides and sulfates, forming monoclinic, colourless to pale yellow, transparent crystals with a vitreous lustre. The mineral occurs associated with stolzite, pyromorphite, hinsdalite, plumbogummite, gibbsite, scheelite and jarosite on brittle fractures of quartz veins or chlorite-schist. Albertiniite is optically biaxial (+) with 2V(meas) ≈ 40° and 2V(calc) = 66°. The measured refractive indices, using sodium light (589 nm) are: α = 1.612(2)°, β = 1.618(2)° and γ = 1.632(2)°. The optical axis plane is parallel to the perfect {010} cleavage plane. It is non-fluorescent under shortwave (254 nm) or longwave (366 nm) ultraviolet light. The calculated density is 2.469 g cm–3 (from the crystal-structure refinement), or 2.458 g cm–3 (from the chemical analysis and the single-crystal unit-cell parameters). The empirical formula is (average of 16 spots and based on 3 anhydrous oxygen apfu) (Ca0.001Mg0.001Na0.003)∑1.061(S0.971O3)·2.84H2O, with the H2O content calculated by difference to 100 wt.%. Albertiniite is monoclinic, with space group P21/n. Its unit-cell parameters are: a = 6.633(1), b = 8.831(1), c = 8.773(1) Å, β = 96.106(8)° and V = 511.0(1) Å3, with Z = 4. The eight strongest measured lines in the powder X-ray diffraction pattern are [d in Å, (I/I0), (hkl)]: 4.072 (100) (1̄11), 3.539 (93) (1̄12), 5.533 (27) (1̄01), 6.167 (14) (011), 2.830 (14) (211), 4.998 (14) (101), 4.353 (12) (111) and 3.897 (12) (012). The mineral, which has been approved by the CNMNC, number IMA2015-004, is named albertiniite in honour of Claudio Albertini, an Italian mineral collector and expert in the systematic mineralogy of the Alps and pegmatites.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albertini, C., Bertolotti, G.P., Grassi, V., Gruppo Grotte Novara, Lana, E., Manni, C. and Montrasio, A. (2014) Miniere e minerali del Vergante e Val d'Agogna, (Arona (VB), editor). Gruppo Archeologico, Storico, Mineralogico Aronese (G.A.S.M.A.) Italy.Google Scholar
Baggio, R.F. and Baggio, S. (1976) Chrystal structure and chemical bonding of manganese (II) sulphite trihydrate. Acta Crystallographica, B32, 19591962.CrossRefGoogle Scholar
Basso, R., Lucchetti, G. and Palenzona, A. (1991) Gravegliaite, MnSO3'3H2O, a new mineral from Val Graveglia (Northern Appennines, Italy). Zeitschriftfür Kristallographie, 197, 97106.CrossRefGoogle Scholar
Farrugia, L.J. (1999) WinGX suite for small-molecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837838.CrossRefGoogle Scholar
Graeser, S., Schwander, H., Demartin, F., Gramaccioli, C.M., Pilati, T and Reusser, E. (1994) Fetiasite (Fe2+,Fe3+,Ti)3O2[As2O5], a new arsenite mineral; its description and structure determination. American Mineralogist, 79, 9961002.Google Scholar
Hentschel, G., Tillmanns, E. and Hofmeister, W (1985) Hannebachite, natural calciumsulfite hemihydrate, CaS03.1/2H2O. Neues Jahrbuch für Mineralogie Monatshefte, 1985, 241250.Google Scholar
Johansson, L.G. and Lindquist, O. (1979) The crystal structure of iron (II) sulfite trihydrate, a-FeSO3-3H2O. Acta Crystallographica, B35, 10171020.CrossRefGoogle Scholar
Larson, A.C. (1967) Inclusion of secondary extinction in least-squares calculations. Acta Crystallographica, 23, 664665.CrossRefGoogle Scholar
Laugier, J. and Bochu, B. (1999) CELREF: Cell parameters refinement program from powder diffrac-tion diagram., Laboratoire des Matériaux et du Génie Physique, Ecole Nationale Supérieure de Physique de Grenoble (INPG), Grenoble France.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part IV The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Paar, W.H., Braithwaite, R.S.W.., Chen, T.T. and Keller, P. (1984) A new mineral, scotlandite (PbSO3) from Leadhills, Scotland; the first naturally occurring sulfite. Mineralogical Magazine, 48, 283—288.CrossRefGoogle Scholar
Sheldrick, G.M. (1997) SHELX-97- A program for crystal structure refinement. University of Göttingen, Germany.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Strunz, H. and Nickel, E.H. (2001) Strunz Mineralogical Tables., 9th Edition E. Schweizerbart-Verlag, Stuttgart Germany.Google Scholar
Vignola, P., Gatta, G.D., Rotiroti, N., Gentile, P., Hatert, F., Baijot, M., Bersani, D., Risplendente, A. and Pavese, A. (2015) Albertiniite, IMA 2015-004. CNMNC. Newsletter No. 25, June 2015, page 532. Mineralogical Magazine, 79, 529—535.Google Scholar
Weidenthaler, C., Tillmanns, E. and Hentschel, G. (1993) Orschallite, Ca3(SO3)2SO4*12H2O, a new calcium-sulfite-sulfate-hydrate mineral. Mineralogy and Petrology, 48, 167177.CrossRefGoogle Scholar
Wilson, A.J.C.. and Prince, E. (1999) International Tables for Crystallography Vol. C, Mathematical, Physical and Chemical Tables. 2nd, edition. Kluwer, Dordrecht The NetherlandsGoogle Scholar