Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-26T08:44:27.384Z Has data issue: false hasContentIssue false

The tobermorite supergroup: a new nomenclature

Published online by Cambridge University Press:  02 January 2018

Cristian Biagioni*
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria 53, 56126 Pisa, Italy
Stefano Merlino
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria 53, 56126 Pisa, Italy
Elena Bonaccorsi
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria 53, 56126 Pisa, Italy


The name 'tobermorites' includes a number of calcium silicate hydrate (C-S-H) phases differing in their hydration state and sub-cell symmetry. Based on their basal spacing, closely related to the degree of hydration, 14, 11 and 9 Å compounds have been described. In this paper a new nomenclature scheme for these mineral species is reported. The tobermorite supergroup is defined. It is formed by the tobermorite group and the unclassified minerals plombièrite, clinotobermorite and riversideite. Plombièrite ('14 Å tobermorite') is redefined as a crystalline mineral having chemical composition Ca5Si6O16(OH)2·7H2O. Its type locality is Crestmore, Riverside County, California, USA. The tobermorite group consists of species having a basal spacing of ∼11 Å and an orthorhombic sub-cell symmetry. Its general formula is Ca4+x(AlySi6–y)O15+2xy·5H2O. Its endmember compositions correspond to tobermorite Ca5Si6O17·5H2O (x = 1 and y = 0) and the new species kenotobermorite, Ca4Si6O15(OH)2·5H2O (x = 0 and y = 0). The type locality of kenotobermorite is the N'Chwaning II mine, Kalahari Manganese Field, South Africa. Within the tobermorite group, tobermorite and kenotobermorite form a complete solid solution. Al-rich samples do not warrant a new name, because Al can only achieve a maximum content of 1/6 of the tetrahedral sites (y = 1). Clinotobermorite, Ca5Si6O17·5H2O, is a dimorph of tobermorite having a monoclinic sub-cell symmetry. Finally, the compound with a ∼9 Å basal spacing is known as riversideite. Its natural occurrence is not demonstrated unequivocally and its status should be considered as “questionable”. The chemical composition of its synthetic counterpart, obtained through partial dehydration of tobermorite, is Ca5Si6O16(OH)2. All these mineral species present an order-disorder character and several polytypes are known. This report has been approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification.

Research Article
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Andersen, M.D., Jakobsen, H.J. and Skibsted, J. (2003) Incorporation of aluminum in the Calcium Silicate Hydrate (C-S-H) of hydrated Portland cements: a high-field 27Al and 29Si MAS NMR investigation. Inorganic Chemistry, 42, 22802287.CrossRefGoogle ScholarPubMed
Biagioni, C. (2011) I silicati idrati di calcio: assetto strutturale e comportamento termico. PhD thesis, University of Pisa, Italy Biagioni, C., Bonaccorsi, E., Lezzerini, M., Merlini, M. and Merlino, S. (2012) Thermal behaviour of tobermorite from N’Chwaning II mine (Kalahari Manganese Field, Republic of South Africa). Part I: thermo-gravimetric and X-ray diffraction studies. European Journal of Mineralogy, 24, 981989.CrossRefGoogle Scholar
Bonaccorsi, E. and Merlino, S. (2005) Modular microporous minerals: cancrinite-davyne group and C-S-H phases. Pp. 241290. in: Micro-and Mesoporous Mineral Phases (G. Ferraris and S. Merlino, editors). Reviews in Mineralogy & Geochemistry, 57. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Bonaccorsi, E., Merlino, S. and Kampf, A.R. (2005) The crystal structure of tobermorite 14 Å(plombierite), a C-S-H phase. Journal of the American Ceramic Society, 88, 505512.CrossRefGoogle Scholar
Claringbull, G.F. and Hey, M.H. (1952) A reexamination of tobermorite. Mineralogical Magazine, 29, 960962.CrossRefGoogle Scholar
Daubrée, M. (1858) Mémoire sur le relation des sources thermals de Plombières avec les filons métalliéres et sur la formation contemporaine des zéolithes. Annales des Mines, 13, 227256.Google Scholar
Diamond, S. (1964) Coordination of substituted aluminum in tobermorite. Journal of the American Ceramic Society, 47, 593594.CrossRefGoogle Scholar
Dornberger-Schiff, K. (1956) On order-disorder structures (OD-structures). Acta Crystallographica, 9, 593601.CrossRefGoogle Scholar
Dornberger-Schiff, K. (1964) Grundzüge einer Theorie der OD Strukturen aus Schichten. Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, Klasse für Chemie, Geologie und Biologie, 3. Akademie Verlag, Berlin, pp. 106.Google Scholar
Dornberger-Schiff, K. (1966) Lehrgang über OD Strukturen. Akademie Verlag, Berlin. Eakle, A.S. (1917) Minerals associated with the crystalline limestone at Crestmore, Riverside County, California. Bulletin of the Department of Geology, University of California, 10, 327360.Google Scholar
Faucon, P., Petit, J.C., Charpentier, T., Jacquinot, F. and Adenot, F. (1999) Silicon substitution for aluminum in calcium silicate hydrates. Journal of the American Ceramic Society, 82, 13071312.CrossRefGoogle Scholar
Ferraris, G., Makovicky, E. and Merlino, S. (2004) Crystallography of Modular Materials. Oxford University Press, Oxford, UK. Flint, E.P., McMurdie, H.F. and Wells, L.S. (1938) Formation of hydrated calcium silicate at elevated temperatures and pressures. Journal of Research of the National Bureau of Standards, 21, 617638.Google Scholar
Gross, S. (1977) The mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel Bulletin, 70, 180.Google Scholar
Heddle, M.F. (1880) Preliminary notice of substances which may prove to be new minerals. Mineralogical Magazine, 4, 117123.CrossRefGoogle Scholar
Heller, L. and Taylor, H.F.W. (1956) Crystallographic Data for Calcium Silicates. HMSO, London. Henmi, C. and Kusachi, I. (1992) Clinotobermorite, Ca5Si6(O,OH)18·5H2O, a new mineral from Fuka, Okayama Prefecture, Japan. Mineralogical Magazine, 56, 353358.Google Scholar
Hoffmann, C. and Armbrust e r , T. (1997) Clinotobermorite, Ca5[Si3O8(OH)]2·4H2O-Ca5[Si6O17]·5H2O, a natural C-S-H(I) type cement mineral: determination of the substructure. Zeitschrift für Kristallographie, 212, 864873.Google Scholar
Komarneni, S., Roy, R., Roy, D.M., Fyfe, C.A., Kennedy, G.J., Bothner-By, A.A., Dadok, J. and Chesnick, A.S. (1985) 27Al and 29Si magic angle spinning nuclear magnetic resonance spectroscopy of Al-substituted tobermorites. Journal of Materials Science, 20, 42094214.CrossRefGoogle Scholar
Liebau, F. (1985) Structural Chemistry of Silicates-Structure, Bonding, and Classification. Springer-Verlag, Berlin. Mandarino, J.A. (1999) Fleischer’s Glossary of Mineral Species. The Mineralogical Record Inc., Tucson, USA. Marincea, S., Bilal, E., Verkaeren, J., Pascal, M. and Fonteilles, M. (2001) Superposed parageneses in the spurrite-, tilleyite-and gehlenite-bearing skarns from Cornet Hill, Apuseni Mountains, Romania. The Canadian Mineralogist, 39, 14351453.Google Scholar
McConnell, J.D.C. (1954) The hydrated calcium silicates riversideite, tobermorite, and plombierite. Mineralogical Magazine, 30, 293305.CrossRefGoogle Scholar
McConnell, J.D.C. (1955) The hydration of larnite (b-Ca2SiO4) and bredigite (a1-Ca2SiO4) and the properties of the resulting gelatinous mineral plombierite. Mineralogical Magazine, 30, 672680.CrossRefGoogle Scholar
Merlino, S., Bonaccorsi, E. and Armbruster, T. (1999) Tobermorites: their real structure and order-disorder (OD) character. American Mineralogist, 84, 16131621.CrossRefGoogle Scholar
Merlino, S., Bonaccorsi, E. and Armbruster, T. (2000) The real structures of clinotobermorite and tobermorite 9 Å: OD character, polytypes, and structural relationships. European Journal of Mineralogy, 12, 411429.CrossRefGoogle Scholar
Merlino, S., Bonaccorsi, E. and Armbruster, T. (2001) The real structure of tobermorite 11 Å: normal and anomalous forms, OD character and polytypic modifications. European Journal of Mineralogy, 13, 577590.CrossRefGoogle Scholar
Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21, 10731080.CrossRefGoogle Scholar
Mitsuda, T. (1970) Synthesis of tobermorite from zeolite. Mineralogical Journal, 6, 143158.CrossRefGoogle Scholar
Mitsuda, T. and Taylor, H.F.W. (1978) Normal and anomalous tobermorites. Mineralogical Magazine, 42, 229235.CrossRefGoogle Scholar
Mitsuda, T., Kusachi, I. and Henmi, K. (1972) Mixtures of 14 Åand 11 Åtobermorite from Fuka, Japan. Abstracts, Cement Association of Japan, Review of the 26th General Meeting, pp. 4768.Google Scholar
Organova, N.I., Koporulina, E.V., Ivanova, A.G., Trubkin, N.V., Zadov, A.E., Khomyakov, A.P., Marcille, I.M., Chukanov, N.V. and Shmakov, A.N. (2002) Structure model of Al,K-substituted tobermorite and structural changes upon heating. Crystallography Reports, 47, 950956.CrossRefGoogle Scholar
Pasero, M., Kampf, A.R., Ferraris, C., Pekov, I.V., Rakovan, J. and White, T.J. (2010) Nomenclature of the apatite supergroup minerals. European Journal of Mineralogy, 22, 163179.CrossRefGoogle Scholar
Richardson, I.G., Brough, A.R., Brydson, R., Groves, G.W. and Dobson, C.M. (1993) The location of aluminum in substituted calcium silicate hydrate (C-S-H) gels as determined by 29 Si and 27 Al NMR and EELS. Journal of the American Ceramic Society, 76, 22852288.CrossRefGoogle Scholar
Richardson, L.G. (2008) The calcium silicate hydrates. Cement and Concrete Research, 38, 137158.CrossRefGoogle Scholar
Rouse, R.C. and Dunn, P.J. (1982) A contribution to the crystal chemistry of ellestadite and the silicate sulfate apatites. American Mineralogist, 67, 9096.Google Scholar
Taylor, H.F.W. (1950) Hydrated calcium silicates. Part I. Compound formation at ordinary temperature. Journal of the Chemical Society, 9, 36823690.CrossRefGoogle Scholar
Taylor, H.F.W. (1953a) Crestmoreite and riversideite. Mineralogical Magazine, 30, 155165.Google Scholar
Taylor, H.F.W. (1953b) Hydrated calcium silicates. Part V. The water content of calcium silicate hydrate (I). Journal of the Chemical Society, 12, 163171.CrossRefGoogle Scholar
Taylor, H.F.W. (1964) The calcium silicate hydrates. Pp. 167232. in: Chemistry of Cements Vol. 1. (H.F.W. Taylor, editor). Academic Press, London.Google Scholar
Taylor, H.F.W. (1986) Proposed structure for calcium silicate hydrate gel. Journal of the American Ceramic Society, 69, 464467.CrossRefGoogle Scholar