Hostname: page-component-5d59c44645-mhl4m Total loading time: 0 Render date: 2024-02-27T11:40:46.966Z Has data issue: false hasContentIssue false

Steinmetzite, Zn2Fe3+(PO4)2(OH)·3H2O, a new mineral formed from alteration of phosphophyllite at the Hagendorf Süd pegmatite, Bavaria

Published online by Cambridge University Press:  02 January 2018

I. E. Grey*
Affiliation:
CSIRO Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
E. Keck
Affiliation:
Algunderweg 3, D-92694 Etzenricht, Germany
A. R. Kampf
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County 900 Exposition Boulevard, Los Angeles, CA 90007, USA
W. G. Mumme
Affiliation:
CSIRO Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
C. M. Macrae
Affiliation:
CSIRO Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
R. W. Gable
Affiliation:
School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
A. M. Glenn
Affiliation:
CSIRO Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
C. J. Davidson
Affiliation:
CSIRO Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
*

Abstract

Steinmetzite, ideally Zn2Fe3+(PO4)2(OH)·3H2O, is a new mineral from the Hagendorf-Süd pegmatite, Hagendorf, Oberpfalz, Bavaria, Germany. Steinmetzite was found in a highly oxidized zone of the Cornelia mine at Hagendorf-Süd. It has formed by alteration of phosphophyllite, involving oxidation of the iron and some replacement of Zn by Fe. Steinmetzite lamellae co-exist with an amorphous Fe-rich phosphate in pseudomorphed phosphophyllite crystals. The lamellae are only a few μm thick and with maximum dimension ∼50 μm. The phosphophyllite pseudomorphs have a milky opaque appearance, often with a glazed yellow to orange weathering rind and with lengths ranging from sub-mm to 1 cm. Associated minerals are albite, apatite, chalcophanite, jahnsite, mitridatite, muscovite, quartz and wilhelmgümbelite.Goethite and cryptomelane are also abundant in the oxidized zone. The calculated density is 2.96 g cm–3. Steinmetzite is biaxial (–) with measured refractive indices α = 1.642(2), β = 1.659 (calc.), γ = 1.660(2) (white light). 2V(meas) = 27(1)°; orientation is Yb, X ^c ≈ 27°, with crystals flattened on {010} and elongated on [001]. Pleochroism shows shades of pale brown; Y > XZ. Electron microprobe analyses (average of seven crystals) with Fe reported as Fe2O3 and with H2O calculated from the structure gave ZnO 31.1, MnO 1.7, CaO 0.5, Fe2O3 21.9, Al2O3 0.3, P2O5 32.9, H2O 14.1 wt.%, total 102.5%. The empirical formula based on 2 P and 12 O, with all iron as ferric and OH–adjusted for charge balance is Zn1.65Fe1.193+ Mn0.112+Ca0.03Al0.023+(PO4)2(OH)1.21·2.79H2O. The simplified formula is Zn2Fe3+(PO4)2(OH)·3H2O.Steinmetzite is triclinic, P1̄, with unit-cell parameters: a = 10.438(2), b = 5.102(1), c = 10.546(2) Å, α = 91.37(2), β = 115.93(2) and γ = 94.20(2)°. V = 502.7(3) Å3, Z = 2. The strongest lines in the powder X-ray diffraction pattern are [dobs in Å (I) (hkl)] 9.313(65) (100), 5.077(38) (010), 4.726(47) (002), 4.657(100) (200), 3.365 (55) (3̄02), 3.071(54) (11̄2) and 2.735(48) (3̄1̄2). The structure is related to that of phosphophyllite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Birch, W.D., Grey, I.E., Mills, S.J., Pring, A. Wilson, N.C. and Keck, E. (2011) Nordgauite, MnAl2(PO4)2(F, OH)2-5.5H2O, a new mineral from the Hagendorf Süd pegmatite, Bavaria, Germany: description and crystal structure. Mineralogical Magazine, 75, 269278.CrossRefGoogle Scholar
Forster, A., Strunz, H. and Tennyson, Ch. (1967) Die Pegmatite des Oberpfälzer Waldes insbesondere der Pegmatit von Hagendorf Sud. Pp. 137198 in: Zur Mineralogie und Geologie der Oberpfalz (R. Metz, editor). Heidelberg, Germany [Der Aufschluss Sonderheft 16].Google Scholar
Grey, I.E., Keck, E., Kampf, A.R., Mumme, W.G., MacRae, C.M., Gable, R.W., Glenn, A.M. and Davidson, C.J. (2015a) Steinmetzite, IMA 2015-081. CNMNC Newsletter No. 28, December 2015, page 1863; Mineralogical Magazine, 79, 18591864.Google Scholar
Grey, I.E., Keck, E., Mumme, W.G., Pring, A., MacRae, C.M., Gable, R.W. and Price, J.R. (2015b) Flurlite, Zn3Mn2+Fe3+(PO4)3(OH)2-9H2O, anew mineral from the Hagendorf Süd pegmatite, Bavaria, with a schoonerite-related structure. Mineralogical Magazine, 79, 11771186.Google Scholar
Grey, I.E., Keck, E., Mumme, W.G., Pring, A., MacRae, C.M., Glenn, A.M., Davidson, C.J., Shanks, F.L. and Mills, S.J. (2016) Kummerite, Mn2+Fe3+Al (PO4)2(OH)2-8H2O, a new laueite-group mineral from the Hagendorf Süd pegmatite, Bavaria, with ordering of Al and Fe + . Mineralogical Magazine, 79, 12431254.CrossRefGoogle Scholar
Grey, I.E., Keck, E., Kampf, A.R., MacRae, C.M., Glenn, A.M. and Price, J.R. (2017) Wilhelmgümbelite, [ZnFe2+Fe3+(PO4)3(OH)4(H2O)5]-2H2O a new schoonerite-related mineral from the Hagendorf Süd pegmatite, Bavaria. Mineralogical Magazine, 81, 287296.CrossRefGoogle Scholar
Gunter, M.E., Bandli, B.R., Bloss, F.D., Evans, S.H., Su, S.C and Weaver, R. (2004) Results from a McCrone spindle stage short course, a new version of EXCALIBR, and how to build a spindle stage. The Microscope, 52, 2339.Google Scholar
Hawthorne, F.C. (1988) Sigloite: The oxidation mechanism in [M-+(PO4)2(OH)2(H2O)2]2” structures. Mineralogy and Petrology, 38, 201211.CrossRefGoogle Scholar
Hill, R.J. (1977) The crystal structure of phosphophyllite. American Mineralogist, 62, 812817.Google Scholar
Laubmann, H. and Steinmetz, H. (1920) Phosphatführende Pegmatite des Oberfalzer und Bayerischen Waldes. Zeitschrift für Kristallographie, 55, 523586.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part IV The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Mills, S.J. and Grey, I.E. (2015) Nomenclature for the laueite supergroup. Mineralogical Magazine, 79, 243246.CrossRefGoogle Scholar
Mills, S.J., Grey, I.E., Kampf, A.R., Birch, W.D., MacRae, C.M., Smith, J.B. and Keck, E. (2016) Kayrobertsonite, MnAl2(PO4)2(OH)2-6H2O, a new phosphate mineral related to nordgauite. European Journal of Mineralogy, 28, 649654.CrossRefGoogle Scholar
Mücke, A. (1981) The paragenesis of the phosphate minerals of the Hagendorf pegmatite-a general view. Chemie der Erde, 40, 217234.Google Scholar
Petricek, V., Dušek, M. and Palatinus, L. (2014) Crystallographic Computing System JANA2006: General features. Zeitschrift für Kristallographie — Crystalline Materials, 229, 345352.CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1990) FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis. Satellite meeting on powder diffraction of the XV Congress of the IUCr, Toulouse, France.Google Scholar
Steinmetz, H. (1926) Phosphophyllit und Reddingit von Hagendorf. Zeitschrift für Kristallographie, 64, 405–12.Google Scholar
Yakovenchuk, V.N., Keck, E., Krivovichev, S.V., Pakhomovsky, Y.A., Selivanova, E.A., Mikhailova, J.A., Chernyatieva, A.P. and Ivanyuk, G.Yu. (2012) Whiteite-(CaMnMn), CaMnMn2Al2[PO4]4(OH)2-8H2O, anew mineral from the Hagendorf-Süd granitic pegmatite, Germany. Mineralogical Magazine, 76, 27612771.CrossRefGoogle Scholar