Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-rtmr9 Total loading time: 0.157 Render date: 2021-06-13T12:54:43.982Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

The presence of vaterite in bonding mortars of marble inlays from Florence Cathedral

Published online by Cambridge University Press:  05 July 2018

S. Signorelli
Affiliation:
Department of Earth Sciences, University of Florence, Via La Pira 4, 50121 Florence, Italy
C. Peroni
Affiliation:
Department of history of Architecture, Restoration and Conservation of Architectural Monuments, University “La Sapienza” Rome, P.za Borghese 9, 00186 Rome, Italy
M. Camaiti
Affiliation:
National Research Council - Centro di Studio sulle, Cause di Deperimento e sui Metodi di Conservazione delle Opere d'Arte - Florence, Via Degli Alfani 74, 50121 Florence, Italy
F. Fratini
Affiliation:
National Research Council - Centro di Studio sulle, Cause di Deperimento e sui Metodi di Conservazione delle Opere d'Arte - Florence, Via Degli Alfani 74, 50121 Florence, Italy

Extract

During the study of some decay processes in marble covering the façade of the Florence Cathedral (1870-1887), vaterite was found as the principal component of some bonding mortars of inlay decorations.

Vaterite is one of the three polymorphous phases of CaCO3 and crystallizes in the hexagonal system, dihexagonal bipyramidal class (Kamhi, 1963; Sato and Matsuda, 1969): it is unstable under normal environmental conditions (Deer et al., 1964).

Type
Short Communications
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below.

References

Andersen, F.A. and Brecevic, L. (1991) Infrared spectra of amorphous and crystalline calcium carbonate. Acta Chem. Scand., 45, 1018—24.CrossRefGoogle Scholar
Cole, V.F. and Kroone, B. (1959) Carbonate minerals in hydrated portland cement. Nature, Brit. Assoc.y B.A., 57 CrossRefGoogle Scholar
Davies, P., Dollimore, D. and Heal, G.R. (1978) Polymorph transition kinetics by DTA. J. Thermal Anal., 13, 473-87.CrossRefGoogle Scholar
Deer, V.A., Howie, R.A. and Zussman, J. (1964) Rockforming Minerals - V. 5, Non-silicates. London, Longman, Green and Co Ltd, 372 pp.Google Scholar
Ducloux, J., Dupuis, T. and Laouina, A. (1987) Influence de gels mineraux et d'argiles sur la cristallogenese du carbonate de calcium a partir des solutions bicarbonatees. Catenay 14, 553—60.CrossRefGoogle Scholar
Friedman, G.M. and Schultz, D.J. (1994) Precipitation of vaterite (CaC03) during oil field drilling. Mineral. Mag., 58, 401-8.CrossRefGoogle Scholar
Kamhi, S.R. (1963) On the structure of vaterite, CaC03. Acta Crystallogr., 16, 770—2.CrossRefGoogle Scholar
Sato, M. and Matsuda, S. (1969) Structure of vaterite and infrared spectra. Z. Kristallogr., 129, 405—10.CrossRefGoogle Scholar
Weir, C.E. and Lippincott, E.R. (1961) Infrared studies of aragonite, calref, and vaterite type structures in the borates, carbonates, and nitrates. J. Res. NBS - A Physics and Chemistry, 65A, 3, 173—83.Google Scholar
12
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The presence of vaterite in bonding mortars of marble inlays from Florence Cathedral
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The presence of vaterite in bonding mortars of marble inlays from Florence Cathedral
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The presence of vaterite in bonding mortars of marble inlays from Florence Cathedral
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *