Hostname: page-component-5d59c44645-kw98b Total loading time: 0 Render date: 2024-02-27T04:30:57.877Z Has data issue: false hasContentIssue false

A new mineral cuprodobrovolskyite Na4Cu(SO4)3 from the Tolbachik volcano (Kamchatka, Russia) and relationships in the family of natural anhydrous Na–Cu sulfates

Published online by Cambridge University Press:  13 November 2023

Nadezhda V. Shchipalkina*
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow, 119991 Russia
Igor V. Pekov
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow, 119991 Russia
Natalia N. Koshlyakova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow, 119991 Russia
Dmitry I. Belakovskiy
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, Moscow, 119071 Russia
Natalia V. Zubkova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow, 119991 Russia
Atali A. Agakhanov
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, Moscow, 119071 Russia
Sergey N. Britvin
Affiliation:
Department of Crystallography, St Petersburg State University, University Embankment 7/9, 199034 St Petersburg, Russia
Maria A. Nazarova
Affiliation:
Institute of Volcanology and Seismology, Far Eastern Branch of Russian Academy of Sciences, Piip Boulevard 9, 683006 Petropavlovsk-Kamchatsky, Russia
*
Corresponding author: Nadezhda V. Shchipalkina; Email: estel58@yandex.ru

Abstract

A new mineral cuprodobrovolskyite, ideally Na4Cu(SO4)3, was found in sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with petrovite, saranchinaite, euchlorine, krasheninnikovite, langbeinite, calciolangbeinite, anhydrite, sanidine, tenorite and hematite. Cuprodobrovolskyite occurs as coarse hexagonal tabular or equant, typically skeletal crystals up to 1 mm and their clusters or crusts up to 1.5 cm × 2.5 cm in area. The mineral is transparent, light blue or greenish-bluish to almost colourless with vitreous lustre. Cuprodobrovolskyite is optically uniaxial (+) with ω = 1.509(3) and ε = 1.528(3). The empirical formula calculated on the basis of 12 O apfu is (Na3.64K0.09Pb0.03)Σ3.76(Cu0.51Ca0.22Mg0.16Zn0.07Al0.01Mn0.01)Σ0.98S3.04O12. The unit-cell parameters of cuprodobrovolskyite calculated from the powder X-ray diffraction data are: a = 15.702(2), c = 22.017(5) Å, V = 4701.0(2) Å3, space group R3 and Z = 18. The crystal structure was studied using the Rietveld method, Rp = 0.0246, Rwp = 0.0325, R1 = 0.0521 and wR2 = 0.0770. Cuprodobrovolskyite is an isostructural analogue of dobrovolskyite Na4Ca(SO4)3 with Cu prevailing over Ca. One of the main features of cuprodobrovolskyite is Cu2+ in 7-fold coordination. On the basis of relationships with saranchinaite Na2Cu(SO4)2 and petrovite Na12Cu2(SO4)8 in the Arsenatnaya fumarole and the results of heating experiments, cuprodobrovolskyite is considered as the highest-temperature phase among anhydrous Na–Cu sulfate minerals.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: David Hibbs

References

Balassone, P., Panikorovskii, T.L., Pellino, A., Bazai, A.V., Bocharov, V.N., Goychuk, O.F., Avdontseva, E.Y., Yakovenchuk, V.N., Krivovichev, S.V., Petti, C., Cappelletti, P., Mondillo, N., Moliterni, A. and Altomare, A. (2023) Enricofrancoite, IMA 2023-002. CNMNC Newsletter 74. Mineralogical Magazine, 87, 783787.Google Scholar
Borisov, A.S., Siidra, O.I., Kovrugin, V.M., Golovin, A.A., Depmeier, W., Nazarchuk, E.V. and Holzheid, A. (2021) Expanding the family of mineral-like anhydrous alkali copper sulfate framework structures: new phases, topological analysis and evaluation of ion migration potentialities. Journal of Applied Crystallography, 54, 237250.Google Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146, 104107 [in Russian].Google Scholar
Filatov, S.K., Shablinskii, A.P., Vergasova, L.P., Saprikina, O.Y., Bubnova, R.S., Moskaleva, S.V. and Belousov, A.B. (2019) Belomarinaite KNa(SO4): A new sulphate from 2012–2013 Tolbachik Fissure Eruption, Kamchatka Peninsula, Russia. Mineralogical Magazine, 83, 569575.CrossRefGoogle Scholar
Filatov, S.K., Shablinskii, A.P., Krivovichev, S.V., Vergasova, L.P. and Moskaleva, S.V. (2020) Petrovite, Na10CaCu2(SO4)8, a new fumarolic sulfate from the Great Tolbachik fissure eruption, Kamchatka Peninsula, Russia. Mineralogical Magazine, 84, 691698.CrossRefGoogle Scholar
Fischmeister, H.F. (1962) Röntgenkristallographische Ausdehnungsmessungen an einigen Alkalisulfaten. Monatshefte für Chemie, 93, 420434.CrossRefGoogle Scholar
Gorelova, L.A., Vergasova, L.P., Krivovichev, S.V., Avdontseva, E.Y., Moskaleva, S.V., Karpov, G.A. and Filatov, S.K. (2016) Bubnovaite, K2Na8Ca(SO4)6, a new mineral species with modular structure from the Tolbachik volcano, Kamchatka peninsula, Russia. European Journal of Mineralogy, 28, 677686.CrossRefGoogle Scholar
Guo, J., Liang, Y., Song, R., Loh, J.Y.Y., Kherani, N.P., Wang, W., Kubel, C., Dai, Y., Wang, L. and Ozin, G.A. (2021) Construction of new active sites: cu substitution enabled surface frustrated lewis pairs over calcium hydroxyapatite for CO2 hydrogenation. Advanced Science, 8, Paper 2101382.CrossRefGoogle Scholar
Hatert, F. (2019) A new nomenclature scheme for the alluaudite supergroup. European Journal of Mineralogy, 31, 807822.Google Scholar
Ibers, J.A. and Hamilton, W.C. (1974) International Tables for X-ray Crystallography: Revised and Supplementary Tables. Kynoch Press, Birmingham, UK.Google Scholar
Kosek, F., Culka, A. and Jehlicka, J. (2018) Raman spectroscopic study of six synthetic anhydrous sulfates relevant to the mineralogy of fumaroles. Journal of Raman Spectroscopy, 49, 12051216.Google Scholar
Kovrugin, V.M., Nekrasova, D.O., Siidra, O.I., Mentre, O., Masquelier, C., Stefanovich, S. Yu. and Colmont, M. (2019) Mineral-inspired crystal growth and physical properties of Na2 Cu(SO4)2 and review of Na2M(SO4)2(H2O)x (x = 0–6) compounds. Crystal Growth & Design, 19, 12331244.Google Scholar
Nakamoto, K. (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds. John Wiley & Sons, New York.Google Scholar
Pekov, I.V., Koshlyakova, N.N., Zubkova, N.V., Lykova, I.S., Britvin, S.N., Yapaskurt, V.O., Agakhanov, A.A., Schipalkina, N.V., Turchkova, A.G. and Sidorov, E.G. (2018) Fumarolic arsenates – a special type of arsenic mineralization. European Journal of Mineralogy, 30, 305322.CrossRefGoogle Scholar
Pekov, I.V., Shchipalkina, N.V., Zubkova, N.V., Gurzhiy, V.V., Agakhanov, A.A., Belakovskiy, D.I., Chukanov, N.V., Lykova, I.S., Vigasina, M.F., Koshlyakova, N.N., Sidorov, E.G. and Giester, G. (2019) Alkali sulfates with aphthitalite-like structures from fumaroles of the Tolbachik volcano, Kamchatka, Russia. I. Metathénardite, a natural high-temperature modification of Na2SO4. The Canadian Mineralogist, 57, 885901.Google Scholar
Petriček, V., Duŝek, M. and Palatinus, L. (2014) Crystallographic Computing System JANA2006: General features. Zeitschrift für Kristallographie, 229, 345352.CrossRefGoogle Scholar
Rasmussen, S.E., Jorgensen, J.E. and Lundtoft, B. (1996) Structures and phase transitions of Na2SO4. Journal of Applied Crystallography, 29, 4247.CrossRefGoogle Scholar
Ruck, K., Wolf, M., Ruck, M., Eckert, D., Krabbes, G. and Müller, K.H. (2001) “CaCu2O3” – a nonstoichiometric compound: structural disorder and magnetic properties. Materials Research Bulletin, 36, 19952002CrossRefGoogle Scholar
Shablinskii, A.P., Filatov, S.K., Krivovichev, S.V., Vergasova, L.P., Moskaleva, S.V., Avdontseva, E.Y., Knyazev, A.V. and Bubnova, R.S. (2021) Dobrovolskyite, Na4Ca(SO4)3, a new fumarolic sulfate from the Great Tolbachik fissure eruption, Kamchatka Peninsula, Russia. Mineralogical Magazine, 85, 233241.CrossRefGoogle Scholar
Shannon, R.D. and Prewitt, C.T. (1969) Effective ionic radii in oxides and fluorides. Acta Crystallographica Section B, 25, 925946Google Scholar
Shchipalkina, N.V., Pekov, I.V., Chukanov, N.V., Belakovskiy, D., Zubkova, N.V., Koshlyakova, N.N., Britvin, S.N. and Sidorov, E.G. (2020a) Alkali sulfates with aphthitalite-like structures from fumaroles of the Tolbachik volcano, Kamchatka, Russia. II. A new mineral, natroaphthitalite, and new data on belomarinaite. The Canadian Mineralogist, 58, 167181.Google Scholar
Shchipalkina, N.V., Pekov, I.V., Koshlyakova, N.N., Britvin, S.N., Zubkova, N.V., Varlamov, D.A. and Sidorov, E.G. (2020b) Unusual silicate mineralization in fumarolic sublimates of the Tolbachik volcano, Kamchatka, Russia–Part 1: Neso-, cyclo-, ino-and phyllosilicates. European Journal of Mineralogy, 32, 101119.CrossRefGoogle Scholar
Shchipalkina, N.V., Pekov, I.V., Britvin, S.N., Koshlyakova, N.N. and Sidorov, E.G. (2021) Alkali sulfates with aphthitalite-like structures from fumaroles of the Tolbachik volcano, Kamchatka, Russia. III. Solid solutions and exsolution. The Canadian Mineralogist, 59, 713727.CrossRefGoogle Scholar
Shchipalkina, N.V., Koshlyakova, N.N., Pekov, I.V., Agakhanov, A.A., Britvin, S.N. and Nazarova, M.A. (2023a) Alkali sulfates with aphthitalite-like structures from fumaroles of the Tolbachik volcano, Kamchatka, Russia. IV. Aphthitalite–palmierite regular intergrowths: crystallography, chemistry and genesis. The Canadian Journal of Mineralogy and Petrology, 61, 609622.Google Scholar
Shchipalkina, N.V., Pekov, I.V., Koshlyakova, N.N., Belakovskiy, D.I., Zubkova, N.V., Agakhanov, A.A., Britvin, S.N., and Nazarova, M.A. (2023b) Cuprodobrovolskyite, IMA 2022-061. CNMNC Newsletter 70. Mineralogical Magazine, 87, https://doi.org/10.1180/mgm.2022.135.Google Scholar
Shi, N., Sanson, A., Venier, A., Fan, L., Sun, C., Xing, X. and Chen, J. (2020) Negative and zero thermal expansion in α-(Cu2–xZnx)V2O7 solid solutions. Chemical Communications, 56, 1066610669.Google Scholar
Shorets, O.Y. (2022) Thermal Expansion and Phase Transformations of Exhalation Sulfates of Alkali Metals – Minerals of the Tolbachik Volcano (Kamchatka Peninsula) and Their Synthetic Analogues. PhD thesis. St. Petersburg University, Russia.Google Scholar
Siidra, O.I., Nazarchuk, E.V., Zaitsev, A.N., Lukina, E.A., Avdontseva, E.Y., Vergasova, L.P., Vlasenko, N.S., Filatov, S.K., Turner, R. and Karpov, G.A. (2017) Copper oxosulfates from fumaroles of Tolbachik volcano: puninite Na2Cu3O(SO4)3 – a new mineral species and structure refinements of kamchatkite and alumoklyuchevskite. European Journal of Mineralogy, 29, 499510.CrossRefGoogle Scholar
Siidra, O.I., Lukina, E.A., Nazarchuk, E.V., Depmeier, W., Bubnova, R.S., Agakhanov, A.A., Avdontseva, E.Y., Filatov, S.K. and Kovrugin, V.M. (2018) Saranchinaite, Na2Cu(SO4)2, a new exhalative mineral from Tolbachik volcano, Kamchatka, Russia, and a product of the reversible dehydration of kröhnkite, Na2Cu(SO4)2(H2O)2. Mineralogical Magazine, 82, 257274.Google Scholar
Siidra, O.I., Borisov, A.S., Charkin, D.O., Depmeier, W. and Platonova, N.V. (2021a) Evolution of fumarolic anhydrous copper sulfate minerals during successive hydration/dehydration. Mineralogical Magazine, 85, 116.Google Scholar
Siidra, O.I., Charkin, D.O., Kovrugin, V.M. and Borisov, A.S. (2021b) K(Na,K)Na2[Cu2(SO4)4]: a new highly porous anhydrous sulfate and evaluation of possible ion migration pathways. Acta Crystallographica, B77, 10031011.Google Scholar
Siidra, O.I., Nekrasova, D.O., Charkin, D.O., Zaitsev, A.N., Borisov, A.S., Colmont, M., Mentre, O. and Spiridonova, D. (2021c) Anhydrous alkali copper sulfates – a promising playground for new Cu2+ oxide complexes: new Rb-analogues of fumarolic minerals. Mineralogical Magazine, 85, 831845.Google Scholar
Singh, S. Neveu, A., Jayanthi, K., Das, T., Chakraborty, S., Navrotsky, A., Pralong, V. and Barpanda, P. (2022) Facile synthesis and phase stability of Cu-based Na2Cu(SO4)2xH2O (x = 0–2) sulfate minerals as conversion type battery electrodes. Dalton Transactions, 51, 1116911179.Google Scholar
Ulutagay-Kartin, M., Etheredge, K.M.S.G., Schimek, G.L. and Hwu, S.-J. (2002) Synthesis, structure, and magnetic properties of two quasi-low-dimensional antiferromagnets, NaMnAsO4 and β-NaCuPO4. Journal of Alloys and Compounds, 338, 8086.CrossRefGoogle Scholar
Warr, L.N. (2021) IMA-CNMNC approved minerals symbols. Mineralogical Magazine, 85, 291320.Google Scholar
Supplementary material: File

Shchipalkina et al. supplementary material

Shchipalkina et al. supplementary material
Download Shchipalkina et al. supplementary material(File)
File 396 KB