Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-12T03:12:00.386Z Has data issue: false hasContentIssue false

New insight into the crystal structure of orthorhombic edingtonite: evidence for a split Ba site

Published online by Cambridge University Press:  05 July 2018

G. D. Gatta*
Affiliation:
Bayerisches Geoinstitut, Universitaet Bayreuth, Universitaet Strasse 30, D-95447 Bayreuth, Germany
T. Boffa Ballaran
Affiliation:
Bayerisches Geoinstitut, Universitaet Bayreuth, Universitaet Strasse 30, D-95447 Bayreuth, Germany

Abstract

Orthorhombic edingtonite has been found coexisting with tetragonal edingtonite in a specimen from Ice River, British Columbia, Canada.

We report data on the composition and crystal structure of the orthorhombic sample. Lattice parameters are: a = 9.5341(6), b = 9.6446(6), c = 6.5108(7)Å, V = 598.68(8)Å 3. The crystal structure was refined in space group P 21212 to R1 = 1.8% using 879 observed reflections. For the first time, evidence for splitting of the extra-framework Ba site in two different sites (Ba1, Ba2), ~0.37 Å apart, is demonstrated. A comparison with the published crystal structures of tetragonal and orthorhombic edingtonite is made.

The present result supports the suggestion that the two edingtonite phases are a consequence of different nucleation phenomena and not different physicochemical conditions.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angel, R.J., Downs, R.T. and Finger, L.W. (2000) High- Temperature–High-Pressure Diffractometry. Pp. 559596 in: High-Temperature and High-Pressure Crystal Chemistry (Hazen, R.M. and Downs, R.T., edtiors). Reviews in Mineralogy and Geochemistry, 41. Minera logical Society of America and Geochemical Society, Washington, D.C., USA.CrossRefGoogle Scholar
Armbruster, T. and Gunter, M.E. (2001) Crystal structures of natural zeolites. Pp. 157 in: Natural Zeolites: Occurrence, Properties, Application (Bish, D.L. and Ming, D.W., editors). Reviews in Mineralogy and Geochemistry, 45. Mineralogical Society of America and Geochemical Society, Washington, D.C., USA.Google Scholar
Baerlocher, Ch., Meier, W.M. and Olson, D.H. (2001) Atlas of Zeolite Framework Types, 5th edition. Elsevier, Amsterdam, Netherlands, 302 pp.Google Scholar
Belitsky, I.A., Gabuda, S.P., Joswig, W. and Fuess, H. (1986) Study of the structure and dynamics of water in the zeolite edingtonite at low temperature by neutron diffraction and NMR-spectroscopy. Neues Jahrbuch für Mineralogie Monatshefte, 541551.Google Scholar
Farrugia, L.J. (1999) WinGX suite for small-molecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837838.CrossRefGoogle Scholar
Flack, H.D. (1983) On enantiomorph-polarity estimation. Acta Crystallographica, A39, 876881.CrossRefGoogle Scholar
Galli, E. (1976) Crystal structure refinement of edingtonite. Acta Crystallographica, B32, 16231627.CrossRefGoogle Scholar
Ghobarkar, H. and Schaef, O. (1997) Hydrothermal synthesis and morphology determination of thomsonite and edingtonite. Crystal Research and Technology, 32, 653657.CrossRefGoogle Scholar
Goryainov, S.V., Kursonov, A.V, Miroshnichenko, Yu.M., Smirnov, M.B. and Kabanov, I.S. (2003) Low-temperature anomalies of infrared band intensities and high-pressure behaviour of edingtonite. Microporo us and Mesoporou s Materials, 61, 283289.CrossRefGoogle Scholar
Gottardi, G. and Galli, E. (1985) Natural Zeolites. Springer-Verlag, Berlin, 409 pp.CrossRefGoogle Scholar
Grice, J.D., Gault, R.A. and Ansell, H.G. (1984) Edingtonite: the first two Canadian occurrences. The Canadian Mineralogist, 22, 253258.Google Scholar
Hey, M.H. (1934) Studies on the zeolites. VI. Edingtonite. Mineralogical Magazine, 23, 483494.CrossRefGoogle Scholar
Ibers, J.A. and Hamilton, W.C., editors (1974) International Tables for X-ray Crystallography, vol. IV, Kynoch, Birmingham, UK.Google Scholar
King, H.E. and Finger, L.W. (1979) Diffracted beam crystal centering and its application to high-pressure crystallography . Journal of Applied Crystallography, 12, 374378.CrossRefGoogle Scholar
Kvick, A. and Smith, J.V. (1983) A neutron diffraction study of the zeolite edingtonite. Journal of Chemical Physics, 79, 23562362.CrossRefGoogle Scholar
Larson, A.C. (1970) Crystallographic Computing (Ahmed, F.R., Hall, S.R. and Huber, C.P., editors). Munksgaard, Copenhagen, Denmark, pp. 291294.Google Scholar
Mazzi, F., Galli, E. and Gottardi, G. (1984) Crystal structure refinement of two tetragonal edingtonites. Neues Jahrbuch für Mineralogie Monatshefte, 373382.Google Scholar
North, A.C.T., Phillips, D.C. and Mathews, F.S. (1968) A semiempirical method of absorption correction. Acta Crystallographica, A24, 351359.CrossRefGoogle Scholar
Pennington, W.T. (1999) DIAMOND-Visual Crystal Software Information System. Journal of Applied Crystallography, 32, 10281029.CrossRefGoogle Scholar
Ralph, R.L. and Finger, L.W. (1982) A computer program for refinement of crystal orientation matrix and lattice constants from diffractometer data with lattice symmetry constraints. Journal of Applied Crystallography, 15, 537539.CrossRefGoogle Scholar
Sheldrick, G.M. (1997) SHELX-97. Programs for Crystal Structure Determination and Re. nement. Univeristy of Goettingen, Germany.Google Scholar
StaÊhl, K. and Hanson, J.C. (1998) An in situ study of the edingtonite dehydration process from X-ray synchrotron powder diffraction. European Journal of Mineralogy, 10, 221228.CrossRefGoogle Scholar
Taylor, W.H. (1935) An X-ray examination of substituted edingtonites. Mineralogical Magazine, 24, 208220.CrossRefGoogle Scholar
Taylor, W.H. and Jackson, R. (1933) The structure of edingtonite. Zeitschrift für Kristallographie, 86, 5364.Google Scholar