Hostname: page-component-797576ffbb-lm8cj Total loading time: 0 Render date: 2023-12-06T10:05:57.327Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Libbyite, (NH4)2(Na2□)[(UO2)2(SO4)3(H2O)]2⋅7H2O, a new mineral with uranyl–sulfate sheets from the Blue Lizard mine, San Juan County, Utah, USA

Published online by Cambridge University Press:  19 April 2023

Anthony R. Kampf*
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
Travis A. Olds
Section of Minerals and Earth Sciences, Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, Pennsylvania 15213, USA
Jakub Plášil
Institute of Physics of the CAS, Na Slovance 1999/2, 18200 Prague 8, Czech Republic
Barbara P. Nash
Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112, USA
Joe Marty
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
*Corresponding author: Anthony R. Kampf; Email:


The new mineral libbyite (IMA2022-091), (NH4)2(Na2□)[(UO2)2(SO4)3(H2O)]2⋅7H2O, was found in the Blue Lizard mine, San Juan County, Utah, USA, where it occurs as tightly intergrown aggregates of light green–yellow equant crystals in a secondary assemblage with bobcookite, coquimbite, halotrichite, metavoltine, rhomboclase, römerite, tamarugite, voltaite and zincorietveldite. The streak is very pale green yellow and the fluorescence is strong green under 405 nm ultraviolet light. Crystals are transparent with vitreous lustre. The tenacity is brittle, the Mohs hardness is ~2½, the fracture is curved. The mineral is soluble in H2O and has a calculated density of 3.465 g⋅cm–3. The mineral is optically uniaxial (–) with ω = 1.581(2) and ɛ = 1.540(2). Electron microprobe analyses provided (NH4)1.92K0.08Na2.00U4.00S6.00O41H18.00. Libbyite is tetragonal, P41212, a = 10.7037(11), c = 31.824(2) Å, V = 3646.0(8) Å3 and Z = 4. The structural unit is a uranyl–sulfate sheet that has the same topology as the sheets in several synthetic uranyl selenates.

Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Associate Editor: David Hibbs


Bartlett, J.R. and Cooney, R.P. (1989) On the determination of uranium-oxygen bond lengths in dioxouranium(VI) compounds by Raman spectroscopy. Journal of Molecular Structure, 193, 295300.10.1016/0022-2860(89)80140-1CrossRefGoogle Scholar
Burns, P.C. (2005) U6+ minerals and inorganic compounds: Insights into an expanded structural hierarchy of crystal structures. The Canadian Mineralogist, 43, 18391894.CrossRefGoogle Scholar
Čejka, J. (1999) Infrared spectroscopy and thermal analysis of the uranyl minerals. Pp. 521622 in: Uranium: Mineralogy, Geochemistry, and the Environment (Burns, P.C. and Finch, R., editors). Reviews in Mineralogy, 38. Mineralogical Society of America, Washington, DC.10.1515/9781501509193-017CrossRefGoogle Scholar
Chenoweth, W.L. (1993) The geology and production history of the uranium deposits in the White Canyon Mining District, San Juan County, Utah. Utah Geological Survey Miscellaneous Publication, 93–3.Google Scholar
Dowty, E. (2016) ATOMS (Version 6.5.0). Shape Software, Kingsport, Tennessee, USA.Google Scholar
Ferraris, G. and Ivaldi, G. (1988) Bond valence vs bond length in O⋯O hydrogen bonds. Acta Crystallographica, B44, 341344.CrossRefGoogle Scholar
Gagné, O.C. and Hawthorne, F.C (2015) Comprehensive derivation of bond valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
García-Rodríguez, L., Rute-Pérez, Á., Piñero, J.R. and González-Silgo, C. (2000) Bond-valence parameters for ammonium-anion interactions. Acta Crystallographica, B56, 565569.CrossRefGoogle Scholar
Gurzhiy, V.V., Tyumentseva, O.S., Krivovichev, S.V., Tananaev, I.G. and Myasoedov, B.F. (2012) Synthesis and structural studies of a new potassium uranyl selenate K(H5O2)[(UO2)2(SeO4)3(H2O)] with strongly deformed layers. Radiochemistry, 54, 4347.10.1134/S1066362212010055CrossRefGoogle Scholar
Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.Google Scholar
Kampf, A.R., Plášil, J., Kasatkin, A.V. and Marty, J. (2015) Bobcookite, NaAl(UO2)2(SO4)4⋅18H2O, and wetherillite, Na2Mg(UO2)2(SO4)4⋅18H2O, two new uranyl sulfate minerals from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 79, 695714.CrossRefGoogle Scholar
Kampf, A.R., Olds, T.A., Plášil, J. and Marty, J. (2023a) Zincorietveldite, Zn(UO2)(SO4)2(H2O)5, the zinc analogue of rietveldite from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 87, Scholar
Kampf, A.R., Olds, T.A., Plášil, J., Nash, B.P. and Marty, J. (2023b) Libbyite, IMA 2022-091. CNMNC Newsletter 70. Mineralogical Magazine, 87, 160168.Google Scholar
Krivovichev, S.V. (2009) Structural crystallography of inorganic oxysalts. IUCr Monographs on Crystallography, 22, 308 pp.Google Scholar
Mandarino, J.A. (1976) The Gladstone-Dale relationship – Part 1: derivation of new constants. The Canadian Mineralogist, 14, 498502.Google Scholar
Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 13071324.10.2113/gscanmin.45.5.1307CrossRefGoogle Scholar
Plášil, J., Buixaderas, E., Cejka, J., Sejkora, J., Jehlicka, J. and Novak, M. (2010) Raman spectroscopic study of the uranyl sulphate mineral zippeite: low wavenumber and U-O stretching regions. Analytical and Bioanalytical Chemistry, 397, 27032715.10.1007/s00216-010-3577-zCrossRefGoogle ScholarPubMed
Plášil, J., Kampf, A.R., Ma, C. and Desor, J. (2023) Oldsite, K2Fe2+[(UO2)(SO4)2]2(H2O)8, a new uranyl sulfate mineral from Utah, USA: its description and implications for the formation and occurrences of uranyl sulfate minerals. Mineralogical Magazine, 87, 151159, Scholar
Pouchou, J.-L. and Pichoir, F. (1991) Quantitative Analysis of Homogeneous or Stratified Microvolumes Applying the Model “PAP.” Pp. 3175 in: Electron Probe Quantitation. Springer US, Boston, USA.10.1007/978-1-4899-2617-3_4CrossRefGoogle Scholar
Sheldrick, G.M. (2015a) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 38.Google Scholar
Sheldrick, G.M. (2015b) Crystal structure refinement with SHELX. Acta Crystallographica, C71, 38.Google Scholar
Supplementary material: File

Kampf et al. supplementary material

Kampf et al. supplementary material

Download Kampf et al. supplementary material(File)
File 274 KB