Hostname: page-component-588bc86c8c-6qrs9 Total loading time: 0 Render date: 2023-11-30T18:49:24.414Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Kufahrite, PtPb, a new mineral from Ledyanoy Creek placer, Galmoenan ultramafic complex, Koryak Highlands, Russia

Published online by Cambridge University Press:  26 February 2021

Evgeniy G. Sidorov
Department of Mineralogy, Institute of Volcanology and Seismology FEB RAS, 9 Piipa boulevard, Petropavlovsk-Kamchatsky, Kamchatsky Krai, 683006, Russia
Anton V. Kutyrev*
Department of Mineralogy, Institute of Volcanology and Seismology FEB RAS, 9 Piipa boulevard, Petropavlovsk-Kamchatsky, Kamchatsky Krai, 683006, Russia
Elena S. Zhitova
Department of Mineralogy, Institute of Volcanology and Seismology FEB RAS, 9 Piipa boulevard, Petropavlovsk-Kamchatsky, Kamchatsky Krai, 683006, Russia St. Petersburg State University, University emb., 7/9, St. Petersburg, 199034, Russia
Atali A. Agakhanov
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071Moscow, Russia
Elena I. Sandimirova
Department of Mineralogy, Institute of Volcanology and Seismology FEB RAS, 9 Piipa boulevard, Petropavlovsk-Kamchatsky, Kamchatsky Krai, 683006, Russia
Anna Vymazalova
Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic
Valery M. Chubarov
Department of Mineralogy, Institute of Volcanology and Seismology FEB RAS, 9 Piipa boulevard, Petropavlovsk-Kamchatsky, Kamchatsky Krai, 683006, Russia
Andrey A. Zolotarev
St. Petersburg State University, University emb., 7/9, St. Petersburg, 199034, Russia
*Author for correspondence: Anton V. Kutyrev, Email:


Kufahrite, PtPb, is a new mineral (IMA2020-045) from the Ledyanoy Creek placer, Koryak Highlands, Russia. The mineral was found in isoferroplatinum (Pt3Fe) grains extracted from a heavy-mineral concentrate, together with tetraferroplatinum (PtFe), tulameenite (Pt2FeCu), native iridium, hollingworthite (RhAsS) and Cr-rich spinel. Kufahrite occurs as part of alteration rims which are formed together with tetraferroplatinum after isoferroplatinum, or as grains up to 150 μm in size. According to powder X-ray diffraction analyses kufahrite is isotypic to its synthetic analogue, it is hexagonal and crystallises in space group P63/mmc adopting the nickeline structure type. Its unit-cell parameters are: a = 4.2492(6) Å; c = 5.486(6) Å; V = 85.78 Å3 and Z = 2. The calculated density is 14.80 g/cm–3. The strongest diffraction lines are [d, Å (I, %) (hkl)]: 3.052 (80) (101), 2.197 (100) (102), 2.125 (28) (110), 1.747 (18) (210), 1.528 (35) (202), 1.240 (18) (212) and 0.958 (22) (312). The Vickers hardness is 295 kg/mm2 (range 262–320, n = 5), corresponding to a Mohs hardness of 4. The empirical formula of kufahrite, calculated from a mean value of 23 electron-microprobe analyses is (Pt0.94Rh0.04)Σ0.98(Pb0.83Sb0.19)Σ1.02. The name (pronounced as [ku fa rait]) honours Fahrid Shakirovitch Kutyev (1943‒1993), a geologist from the Institute of Volcanology of USSR Academy of Sciences, who played a key role in the discovery of the Koryak–Kamchatka Platinum Belt, including the Ledyanoy Creek placer platinum deposit, where the new mineral has been discovered.

Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Associate Editor: Oleg I Siidra

Sadly, since this paper was accepted the first author, Evgeniy G. Sidorov, has passed away.


Agilent Technologies (2014) CrysAlis, PRO. Agilent Technologies Ltd., Yarnton, UK.Google Scholar
Ames, D.E., Kjarsgaard, I.M., McDonald, A.M. and Good, D.J. (2017) Insights into the extreme PGE enrichment of the W horizon, marathon Cu-Pd deposit, Coldwell alkaline complex, Canada: Platinum-group mineralogy, compositions and genetic implications. Ore Geology Reviews, 90, 723-747.CrossRefGoogle Scholar
Astrakhantsev, O.V., Batanova, V.G. and Perfil'ev, A.S. (1991) The structure of the dunite-clinopyroxenite-gabbro Gal'moenan complex. Geotectonics, 25, 132144.Google Scholar
Batanova, V.G. and Astrakhantsev, O.V. (1994) Island arc mafic-ultramafic plutonic complexes of North Kamchatka. Proceedings of 29th International Geological Congress, 129143.Google Scholar
Batanova, V.G., Pertsev, A.N., Kamenetsky, V.S., Ariskin, A.A., Mochalov, A.G. and Sobolev, A.V. (2005) Crustal evolution of island-arc ultramafic magma: Galmoenan pyroxenite-dunite plutonic complex, Koryak Highland (Far East Russia). Journal of Petrology, 46, 13451366.CrossRefGoogle Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing of X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski RMO (Proceedings of the Russian Mineralogical Society), 146, 104107 [in Russian with English abstract].Google Scholar
Bruker AXS (2014) APEX2; Version 2014.11-0. Bruker AXS: Madison, WI, USA, 2014.Google Scholar
Cabri, L.J. (2002) The platinum-group minerals. Pp. 13–129 in: The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group Elements (Cabri, L.J., editor). CIM Special Volume, 54. Canadian Institute of Mining, Metallurgy, and Petroleum (CIM), Westmount, QC, Canada.Google Scholar
Cabri, L.J. and Genkin, A.D. (1991) Re-examination of Pt alloys from lode and placer deposits, Urals. The Canadian Mineralogist, 29, 419425.Google Scholar
Cabri, L.J. and Laflamme, J.H.G. (1974) Sudburyite, a new palladium-antimony mineral from Sudbury, Ontario. The Canadian Mineralogist, 12, 275279.Google Scholar
Evans, B.W., Hattori, K. and Baronnet, A. (2013) Serpentinite: What, why, where? Elements, 9, 99106.CrossRefGoogle Scholar
Evstigneeva, T. and Tarkian, M. (1996) Synthesis of platinum-group minerals under hydrothermal conditions. European Journal of Mineralogy, 8, 549564.CrossRefGoogle Scholar
Früh-Green, G.L., Connolly, J.A.D., Plas, A., Kelley, D.S. and Grobéty, B. (2004) Serpentinization of oceanic peridotites: Implications for geochemical cycles and biological activity. Geophysical Monograph Series, 144, 119136.Google Scholar
Johan, Z. and Picot, P. (1972) La stumpflite, Pt (Sb,Bi), un nouveau mineral; Bulletin de la Société française de Minéralogie et de Cristallographie 95, 610613 [in French].CrossRefGoogle Scholar
Klein, F. and Bach, W. (2009). Fe–Ni–Co–O–S Phase Relations in Peridotite-Seawater Interactions. Journal of Petrology, 50, 3759.CrossRefGoogle Scholar
Melcher, F. and Lodziak, J. (2007) Platinum-group minerals of concentrates from the driekop platinum pipe, eastern bushveld complex – tribute to Eugen F. Stumpfl. Neues Jahrbuch für Mineralogie – Abhandlungen, 183, 173195.CrossRefGoogle Scholar
Mochalov, A.G. and Bortnikov, N.S. (2008) New criteria of the genesis of platinum group minerals in intergrowths with pyroxenes from zonal gabbro–pyroxenite–dunite massifs in the South Koryak Highland (Russia). Geology of Ore Deposits, 421, 941945.Google Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.CrossRefGoogle Scholar
Nazimova, Y.V., Zaytsev, V.P. and Petrov, S.V. (2011) The Galmoenan massif, Kamchatka, Russia: geology, PGE mineralization, applied mineralogy and beneficiation. The Canadian Mineralogist, 49, 14331453.CrossRefGoogle Scholar
Nixon, G.T., Cabri, L.J. and Laflamme, J.H.G. (1990) Platinum-group-element mineralization in lode and placer deposits associated with the Tulameen Alaskan-type complex, British Columbia. The Canadian Mineralogist, 28, 503535.Google Scholar
O'Driscoll, B. and González-Jiménez, J.M. (2016) Petrogenesis of the platinum-group minerals. Pp. 489578 in: Highly Siderophile and Strongly Chalcophile Elements in High-Temperature Geochemistry and Cosmochemistry (Harvey, J. and Day, J.M.D., editors). Reviews in Mineralogy and Geochemistry, 81. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Popov, K.V., Bazylev, B.A. and Shcherbakov, V.P. (2006) Temperature range for magnetization of oceanic spinel peridotites. Oceanology, 46, 256267.CrossRefGoogle Scholar
Rudashevsky, N.S., Avdontsev, S.N. and Dneprovskaya, M.B. (1992) Evolution of PGE mineralization in hortonolitic dunites of the Mooihoek and Onverwacht pipes, Bushveld complex. Mineralogy and Petrology, 47, 3754.CrossRefGoogle Scholar
Sidorov, E.G., Tolstykh, N.D., Podlipsky, M.Y. and Pakhomov, I.O. (2004) Placer PGE minerals from the Filippa clinopyroxenite-dunite massif (Kamchatka). Geologiya i Geofizika, 45, 11281144 [in Russian].Google Scholar
Sidorov, E.G., Kozlov, A.P. and Tolstykh, N.D. (2012) The Galmoenan Ultrabasic Massif and its Platinum Potential. Pp. 288. Nauchnyi Mir, Moscow [in Russian].Google Scholar
Sidorov, E.G., Sandimirova, E.I., Chubarov, V.M. and Ananiev, V.V. (2018) Accessory minerals of the mafic-ultramafic massif Galmoenan (Koryakskoye upland, Kamchatka). Zapiski RMO (Proceedings of the Russian Mineralogical Society), 147, 4464.Google Scholar
Sidorov, E.G., Kutyrev, A.V., Zhitova, E.S., Agakhanov, A.A., Sandimirova, E.I., Vymazalova, A. and Chubarov, V.M. (2020) Kufahrite, IMA 2020-045. CNMNC Newsletter No. 57. Mineralogical Magazine, 84, 791794.Google Scholar
Spiridonov, E.M., Kulagov, E.A., Serova, A.A., Kulikova, I.M., Korotaeva, N.N., Sereda, E.V., Tushentsova, I.N., Belyakov, S.N. and Zhukov, N.N. (2015) Genetic Pd, Pt, Au, Ag, and Rh mineralogy in Noril'sk sulfide ores. Geology of Ore Deposits, 57, 402432.CrossRefGoogle Scholar
Stepanov, S., Palamarchuk, R., Kozlov, A., Khanin, D., Varlamov, D. and Kiseleva, D. (2019) Platinum-group minerals of Pt-placer deposits associated with the Svetloborsky Ural-Alaskan type massif, Middle Urals, Russia. Minerals, 9, 77.CrossRefGoogle Scholar
Stepanov, S.Y., Palamarchuk, R.S., Antonov, A.V., Kozlov, A.V., Valrlamov, D.A., Khanin, D.A. and Zolotarev, A.A. Jr (2020) Morphology, composition, and ontogenesis of platinum-group minerals in chromitites of zoned clinopyroxenite-dunite massifs the Middle Urals. Russian Geology and Geophysics, 61, 4767.CrossRefGoogle Scholar
Tarkian, M., Evstigneeva, T. and Gorshkov, A., 1996. Synthesis of Pt- And Pd-sulphides in low temperature (85°C) solutions buffered by clay minerals and graphite: Preliminary results. Mineralogy and Petrology, 58, 7178.CrossRefGoogle Scholar
Tolstykh, N., Krivenko, A., Sidorov, E., Laajoki, K. and Podlipsky, M. (2002) Ore mineralogy of PGM placers in Siberia and the Russian Far East. Ore Geology Reviews, 20, 125.CrossRefGoogle Scholar
Tolstykh, N.D., Sidorov, E.G. and Kozlov, A.P. (2004) Platinum-group minerals in lode and placer deposits associated with the Ural-Alaskan-type Galmoenan Complex, Koryak–Kamchatka Platinum Belt, Russia. The Canadian Mineralogist, 42, 619630.CrossRefGoogle Scholar
Tolstykh, N.D., Telegin, Y.M. and Kozlov, A.P. (2011) Platinum mineralization of the Svetloborsky and Kamenushinsky massifs (Urals Platinum belt). Russian Geology and Geophysics, 52, 603619.CrossRefGoogle Scholar
Tolstykh, N., Kozlov, A. and Telegin, Y. (2015) Platinum mineralization of the Svetly Bor and Nizhny Tagil complexes, Ural Platinum Belt. Ore Geology Review, 67, 234243.CrossRefGoogle Scholar
Tolstykh, N., Krivolutskaya, N., Safonova, I., Shapovalova, M., Zhitova, L. and Abersteiner, A. (2020) Unique Cu-rich sulphide ores of the Southern-2 orebody in the Talnakh intrusion, Noril'sk area (Russia): Geochemistry, mineralogy and conditions of crystallization. Ore Geology Reviews, 122, 103525.CrossRefGoogle Scholar
Zhuravlev, N.N., Zhdanov, G.S. and Smirnova, Ye.M. (1962) Investigation of alloys of ternary alloys on a base of superconductive compounds. Fiz Met Metalloved, 13, 6270 [in Russian].Google Scholar
Supplementary material: File

Sidorov et al. supplementary material

Sidorov et al. supplementary material

Download Sidorov et al. supplementary material(File)
File 18 KB