Hostname: page-component-cd4964975-xtmlv Total loading time: 0 Render date: 2023-03-29T08:19:34.714Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Katophorite from the Jade Mine Tract, Myanmar: mineral description of a rare (grandfathered) endmember of the amphibole supergroup

Published online by Cambridge University Press:  02 January 2018

Roberta Oberti*
CNR-Istituto di Geoscienze e Georisorse, UOS Pavia, via Ferrata 1, I-27100 Pavia, Italy
Massimo Boiocchi
Centro Grandi Strumenti, Università di Pavia, via Bassi 21, I-27100 Pavia, Italy
Frank C. Hawthorne
Department of Geological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
Neil A. Ball
Department of Geological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
George E. Harlow
Department of Earth and Planetary Sciences, American Museum of Natural History, Central Park West at 79th Street New York, NY 10024-5192, USA


Katophorite has the ideal formula ANaB(NaCa)C(Mg4Al)T(Si7Al)O22W(OH)2 (Hawthorne et al., 2012). No published analyses of amphiboles fall in the katophorite compositional field, except that of Harlow and Olds (1987) for an amphibole from near Hpakan in the Jade Mine Tract, Myanmar. This amphibole was approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification (vote 2013-140) as katophorite, and is reported here. Holotype katophorite is monoclinic, space group C2/m, a = 9.8573(8), b = 17.9617(15), c = 5.2833(4) Å, β = 104.707(2)°, V = 904.78(13) Å3, Z = 2. The calculated density is 3.091 g cm–3. In plane-polarized light, katophorite is pleochroic, X = pale blue (medium), Y = light blue-green (strongest), Z = colourless; Xa = 30.6° (β obtuse), Y || b, Zc = 15.8 (β acute). It is biaxial negative, α = 1.638, β = 1.642, γ = 1.644, all ± 0.002; 2Vobs = 73(1)°, 2Vcalc = 70°. The eight strongest lines in the powder X-ray diffraction pattern are [d in Å (I)(hkl)]: 2.700 (100)(151), 3.129 (69)(310), 2.536 (65)(202), 3.378 (61)(131), 8.421 (55)(110), 2.583 (46)(061), 2.942 (43)(221) and 2.334 (41)(351). Electron-microprobe analysis of the refined crystal gave SiO251.74, Al2O37.38, TiO2 0.14, FeO 1.55, Fe2O3 2.82, MgO 18.09, CaO 8.17, Na2O 6.02, K2O 0.24, F 0.06, H2Ocalc. 1.80, Li2Ocalc. 0.09, sum 100.55 wt.% (Li2O and H2O based on the results of single-crystal structure refinement). The formula unit, calculated on the basis of 24 (O,OH,F) with (OH + F + O) = 2 is: A(Na0.85K0.04)Σ=0.89B(Ca1.22Na0.78)Σ=2.00C(Mg3.76Al0.43Fe0.303+Cr0.273+Fe0.182+Li0.05Ti0.014+)Σ=5.00T(Si7.21Al0.79)Σ=8.00O22W[(OH)1.67O0.30F0.03)]Σ=2.00.

Research Article
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Ali, M. and Arai, S. (2013) Cr-rich magnesiokatophorite as an indicator of mantle metasomatism by hydrous Na-rich carbonatite. Journal of Mineralogical and Petrological Sciences, 108, 215226.CrossRefGoogle Scholar
Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (2001) Handbook of Mineralogy, Volum II. Silica, Silicates. Part 1. Mineral Data Publishing, Tucson, USA, [see p. 405]. Bartelmehs, K.L., Bloss, F.D., Downs, R.T. and Birch, J.B. (1992) EXCALIBR II. Zeitschrift für Kristallographie, 199, 185196.Google Scholar
Brøgger (1894) Die Eruptivgesteine des Kristianiagebietes I. Die Gesteine der Grorudit-Tinguait-Serie. Videnskabsselkabets Skrifter. I. Mathematisk-Naturvidenskabelig, Klasse 4, 2739.Google Scholar
Bruker (2003) SAINT Software Reference Manual. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA. Deer, W.A., Howie, R.A. and Zussman, J. (1963) Rock-Forming Minerals. Volume. 2. Chain Silicates. John Wiley and Sons, New York, pp. 359363.Google Scholar
Harlow, G.E. and Olds, E.P. (1987) Observations on terrestrial ureyite and ureyitic pyroxene. American Mineralogist, 72, 126136.Google Scholar
Harlow, G.E., Sorensen, S.S., Sisson, V.B. and Shi, G. (2014) Chapter 10: The Geology of Jade Deposits. Pp. 305374. in: The Geology of Gem Deposits (2nd Edition), (L.A. Groat, editor). Mineralogical Association of Canada Short Course Handbook Series 44, Mineralogical Association of Canada, Québec, Canada.Google Scholar
Hawthorne, F.C. and Oberti, R. (2007) Amphiboles: Crystal chemistry. Pp. 154. in: Amphiboles: Crystal Chemistry, Occurrence and Health Issues (F.C. Hawthorne and R. Oberti, editors). Reviews in Mineralogy & Geochemistry, 67. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Hawthorne, F.C., Ungaretti, L., Oberti, R., Bottazzi, P. and Czamanske, G.K. (1993) Li: an important component in igneous alkali amphiboles. American Mineralogist, 78, 733745.Google Scholar
Hawthorne, F.C., Ungaretti, L., Oberti, R., Cannillo, E. and Smelik, E.A. (1994) The mechanism of [6]Li incorporation in amphiboles. American Mineralogist, 79, 443451.Google Scholar
Hawthorne, F.C., Ungaretti, L. and Oberti, R. (1995) Site populations in minerals: terminology and presentation of results of crystal-structure refinement. The Canadian Mineralogist, 33, 907911.Google Scholar
Hawthorne, F.C., Oberti, R. and Sardone, N. (1996) Sodium at the A site in clinoamphiboles: the effects of composition on patterns of order. The Canadian Mineralogist, 34, 577593.Google Scholar
Hawthorne, F.C., Oberti, R. and Martin, R.F. (2006). Short-range order in amphiboles from the Bear Lake diggings, Ontario. The Canadian Mineralogist, 44, 11711179.CrossRefGoogle Scholar
Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C. and Welch, M.D. (2012) Nomenclature of the amphibole supergroup. American Mineralogist, 97, 20312048.CrossRefGoogle Scholar
Hughes, R.W., Galibert, O., Bosshart, G., Ward, F., Oo, T., Smith, M., Sun, T.T. and Harlow, G.E. (2000) Burmese jade: the inscrutable gem. Gems and Gemology, 36(1), 226.CrossRefGoogle Scholar
Mandarino, J.A. (1998) The second list of additions and corrections to the Glossary of Mineral Species (1995). The amphibole group. Mineralogical Record, 29(3), 169174.Google Scholar
Mével, C. and Kiénast, J.R. (1986) Jadeite-kosmochlor solid solution and chromian sodic amphiboles in jadeitites and associated rocks from Tawmaw (Burma). Bulletin de Minéralogie, 109, 617633.CrossRefGoogle Scholar
Oberti, R., Ungaretti, L., Cannillo, E., Hawthorne, F.C. and Memmi, I. (1995) Temperature-dependent Al order-disorder in the tetrahedral double-chain of C2/m amphiboles. European Journal of Mineralogy, 7, 10491063.CrossRefGoogle Scholar
Oberti, R., Hawthorne, F.C., Cannillo, E. and Cámara, F. (2007) Long-range order in amphiboles. Pp. 125171. in: Amphiboles: Crystal Chemistry, Occurrence and Health Issues (Hawthorne, F.C., Oberti, R., Della Ventura, G. and Mottana, A., editors). Reviews in Mineralogy & Geochemistry, 67. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Oberti, R., Boiocchi, M., Hawthorne, F.C., Ball, N.A. and Harlow, G.E. (2014) Katophorite, IMA 2013-140. CNMNC Newsletter No. 20, June 2014, page 554; Mineralogical Magazine, 78, 549558.Google Scholar
Oberti, R., Boiocchi, M., Hawthorne, F.C., Ball, N.A. and Harlow, G.E. (2015a) Eckermannite revised. The new holotype from the Jade Mine Tract, Myanmar: crystal structure, mineral data and hints on the reasons for the rarity of eckermannite. American Mineralogist, 100, 909914.CrossRefGoogle Scholar
Oberti, R., Boiocchi, M., Hawthorne, F.C., Ball, N.A. and Harlow, G.E. (2015b) Magnesio-arfvedsonite from Jade Mine Tract, Myanmar: crystal-chemistry and mineral description. Mineralogical Magazine, 79, 253260.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1985) ‘PAP’ j(rZ) procedure for improved quantitative microanalysis. Pp. 104160. in: Microbeam Analysis (J.T. Armstrong, editor). San Francisco Press, San Francisco.Google Scholar
Pushcharovski, D.Y., Lebedeva, Y.S., Pekov, I.V., Ferraris, G., Novakova, A.A. and Ivaldi, G. (2003) Crystal structure of magnesioferrikatophorite. Crystallographic Reports, 48, 1623.CrossRefGoogle Scholar
Sheldrick, G.M. (1996). SADABS Siemens area detector absorption correction program. University of Göttingen, Göttingen, Germany. Shi, G-H., Harlow, G.E., Wang, J., Wang, J., Ng, E., Wang, X. and Cao, S.M. (2012) Mineralogy of jadeitite and related rocks from Myanmar: a review with new data. European Journal of Mineralogy, 24, 345370.Google Scholar
Simons, K.K., Harlow, G.E., Sorensen, S.S. Brueckner, H.K., Goldstein, S.L., Hemming, N.G. and Langmuir, C.H. (2010) Lithium isotopes in Guatemala and Franciscan HP-LT Rocks: insights into the role of sediment-derived fluids in the mantle wedge. Geochimica et Cosmochimica Acta, 74, 36213641.CrossRefGoogle Scholar
Sorensen, S., Harlow, G.E. and Rumble, D. (2006) The origin of jadeitite-forming subduction zone fluids: CL-guided SIMS Oxygen Isotope and Trace Element Evidence. American Mineralogist, 91, 979996.CrossRefGoogle Scholar
Tsujimori, T. and Harlow, G.E. (2012) Petrogenetic relationships between jadeitite and associated highpressure and low-temperature metamorphic rocks in worldwide jadeitite localities: A review. European Journal of Mineralogy, 24, 371390.CrossRefGoogle Scholar
Supplementary material: File

Oberti et al. supplementary material


Download Oberti et al. supplementary material(File)
File 60 KB