Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-24T01:39:43.008Z Has data issue: false hasContentIssue false

Dmitryvarlamovite, Ti2(Fe3+Nb)O8, a new columbite-supergroup mineral related to the wolframite group

Published online by Cambridge University Press:  01 February 2024

Oksana V. Udoratina
Affiliation:
Institute of Geology, FRC Komi Scientific Center, Uralian Branch of the Russian Academy of Sciences, Syktyvkar, Russia
Taras L. Panikorovskii
Affiliation:
Kola Science Centre, Russian Academy of Sciences, 14 Fersman Street, Apatity 184200, Russia Department of Crystallography, St. Petersburg State University, 7–9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia
Nikita V. Chukanov*
Affiliation:
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432 Russia
Mikhail V. Voronin
Affiliation:
D.S. Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432 Russia
Vladimir P. Lutoev
Affiliation:
Institute of Geology, FRC Komi Scientific Center, Uralian Branch of the Russian Academy of Sciences, Syktyvkar, Russia
Atali A. Agakhanov
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Sergey I. Isaenko
Affiliation:
Institute of Geology, FRC Komi Scientific Center, Uralian Branch of the Russian Academy of Sciences, Syktyvkar, Russia
*
Corresponding author: Nikita V. Chukanov; Email: chukanov@icp.ac.ru

Abstract

The new columbite-supergroup mineral dmitryvarlamovite, ideally Ti2(Fe3+Nb)O8, was discovered in weathered alkaline metasomatic assemblages formed after late Riphaean sedimentary carbonate rocks of the Verkhne-Shchugorskoe deposit, Middle Timan Mts., Russia. The associated minerals are columbite-(Fe), pyrochlore-group minerals, monazite-(Ce), xenotime-(Y), baryte, pyrite, drugmanite and plumbogummite. Dmitryvarlamovite occurs as isolated anhedral equant grains up to 0.5 mm across. The colour of dmitryvarlamovite is black, the streak is black and the lustre is submetallic. The new mineral is brittle, with the mean VHN hardness of 753 kg mm–2 corresponding to the Mohs’ hardness of 6. No cleavage is observed. The fracture is conchoidal. The calculated density is 4.891 g⋅cm–3. In reflected light, dmitryvarlamovite is light grey; no pleochroism is observed. The reflectance values (Rmin, % / Rmax, % / λ, nm) are: 19.8/20.3/470, 18.3/18.9/546, 17.8/18.5/589 and 17.3/17.8/650. The chemical composition is (electron microprobe data, with iron divided into Fe2O3 and FeO based on the charge balance, wt.%): MnO 0.11, FeO 1.51, V2O3 0.89, Cr2O3 0.28, Fe2O3 19.26, TiO2 37.72, Nb2O5 40.08, total 99.85. The IR and Raman spectra indicate the absence of H-, C- and N-bearing groups. The empirical formula is (Fe2+0.08V3+0.05Cr3+0.01Fe3+0.92Ti1.79Nb1.15)Σ4.00O8. The crystal structure was determined using single-crystal X-ray diffraction data and refined to R = 0.048. Dmitryvarlamovite is orthorhombic, space group P21212, a = 4.9825(6), b = 4.6268(4), c = 5.5952(6) Å and V = 5.5952(6) Å3 (Z = 1). The structure is related to those of wolframite-group minerals but differs in the scheme of cation ordering. The crystal-chemical formula derived based on the structural data is (Ti0.57Nb0.21Fe3+0.15Fe2+0.04V0.02Cr0.01)2(Nb0.36Ti0.33Fe3+0.31)2O8. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 3.58 (40) (011), 2.911 (100) (111), 2.809 (40) (002), 2.497 (38) (020), 2.447 (29) (103), 1.7363 (32) (103) and 1.7047 (29) (220). Dmitryvarlamovite is named after Dmitry Anatol'evich Varlamov (b. 1965).

Type
Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Oleg I Siidra

References

Agilent Technologies (2014) CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, UK.Google Scholar
Amthauer, G. and Rossman, G.R. (1984) Mixed valence of iron in minerals with cation clusters. Physics and Chemistry of Minerals, 11, 3751. https://doi.org/10.1007/BF00309374CrossRefGoogle Scholar
Bonnici, J.-P., Doucet, S., Goñi, J. and Picot, P. (1964) Étude géochimique et minéralogique sur la dégradation de la cassitérite. Évolution du gel qui en dérive (Varlamoffite). Bulletin de Minéralogie Année, 87, 355364.Google Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Brugeman, S.A. (2009) Univem MS Software (Version 9.10). SFU, Rostov on Don, Russia [in Russian].Google Scholar
Burns, R.G. (1981) Intervalence transitions in mixed valence minerals of iron and titanium. Annual Review of Earth and Planetary Sciences, 9, 345383. https://doi.org/10.1146/annurev.ea.09.050181.002021CrossRefGoogle Scholar
Chukanov, N.V. and Chervonnyi, A.D. (2014) Infrared Spectroscopy of Minerals and Related Compounds. Springer, Cham–Heidelberg–Dordrecht–New York–London, 1109 pp. https://doi.org/10.1007/978-3-319-25349-7Google Scholar
Chukanov, N.V. and Vigasina, M.F. (2020) Vibrational (Infrared and Raman) Spectra of Minerals and Related Compounds. Springer-Verlag GmbH, Dordrecht, The Netherlands, 1376 pp. https://doi.org/10.1007/978-3-030-26803-9CrossRefGoogle Scholar
Chukanov, N.V., Pasero, M., Aksenov, S.M., Britvin, S.N., Zubkova, N.V., Yike, L. and Witzke, T. (2023a) Columbite supergroup of minerals: nomenclature and classification. Mineralogical Magazine, 87, 1833. https://doi.org/10.1180/mgm.2022.105CrossRefGoogle Scholar
Chukanov, N.V., Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Shelukhina, Yu.S., Britvin, S.N. and Pushcharovsky, D.Yu. (2023b) Nioboixiolite-(Mn2+), (NbMn2+)O2, a new ixiolite-group mineral from the Malkhan pegmatite field, Transbaikal region, Russia. Zapiski RMO (Proceedings of the Russian Mineralogical Society), 152(1), 817 [in English]. https://doi.org/10.31857/S0869605523010033CrossRefGoogle Scholar
Faуziev, A.R. and Pirov, G. (2016) The silver-tin ore formation types field central of Tajikistan. Papers of the American Geosciences Institute, paper # 3955. https://www.americangeosciences.org/sites/default/files/igc/3955.pdfGoogle Scholar
Garg, R., Rodrigues, O.D., da Silva E., Galvao and Garg, V.K. (1991) Mössbauer study of Brazilian columbite. Hyperfine Interactions, 67, 443446. https://doi.org/10.1007/BF02398182CrossRefGoogle Scholar
Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.CrossRefGoogle Scholar
Kato, A., Shimizu, T. and Matsuo, G. (1970) The occurrence of varlamoffite from Mt. Gyoja, Kyoto Prefecture, Japan. Bulletin of the National Science Museum Japan, 13, 331336.Google Scholar
Konovalenko, S.I., Ananyev, S.A., Chukanov, N.V., Rastsvetaeva, R.K., Aksenov, S.M., Baeva, A.A., Gainov, R.R., Vagizov, F.G., Lopatin, O.N. and Nebera, T.S. (2015) A new mineral species rossovskyite, (Fe3+,Ta)(Nb,Ti)O4: crystal chemistry and physical properties. Physics and Chemistry of Minerals, 42, 825833. https://doi.org/10.1007/s00269-015-0766-5CrossRefGoogle Scholar
Kulikova, K.V., Udoratina, O.V., Makeev, B.A. and Shuisky, A.S. (2022) Potassium feldspar of ore alkaline metasomatites (Middle Timan). Proceedings of the Komi Science Center of the Ural Branch of the Russian Academy of Sciences. Earth Sciences Series, 2(54), 4146. https://doi.org/10.19110/1994-5655-2022-2-41-46Google Scholar
Likhachev, V.V. (1993) Rare Metal Mineralization of the Bauxite-Bearing Crust of Weathering of Middle Timan. Syktyvkar, Komi SC of the Uralian branch of RAS, 224 pp. [in Russian].Google Scholar
Matveeva, T.N., Chanturia, V.A., Gromova, N.K. and Lantsova, N.K. (2018) Effect of chemical and phase compositions on absorption and flotation properties of tin-sulphide ore tailings with dibutyl dithiocarbamate. Journal of Mining Science, 54, 10141023. https://doi.org/10.1134/S1062739118065179CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2008) VESTA: A Three-Dimensional Visualization System for Electronic and Structural Analysis. Journal of Applied Crystallography, 41, 653658.CrossRefGoogle Scholar
Nedosekova, I., Vladykin, N., Udoratina, O. and Belyatsky, B. (2021) Ore and geochemical specialization and substance sources of the Ural and Timan carbonatite complexes (Russia): insights from trace element, Rb-Sr and Sm-Nd isotope data. Minerals, 11, 711, 141. https://doi.org/10.3390/min11070711CrossRefGoogle Scholar
Pautov, L.A., Mirakov, M.A., Shodibekov, M.A. and Khvorov, P.V. (2018) A find of herzenbergite in miarolic granite pegmatite Vez-Dara, SW Pamir, Tajikistan. New Data on Minerals, 52, 614 [in Russian].Google Scholar
Russell, A. and Vincent, E.A. (1952) On the occurrence of varlamoffite (partially hydrated stannic oxide) in Cornwall. Mineralogical Magazine and Journal of the Mineralogical Society, 29, 817826.CrossRefGoogle Scholar
Sharko, E.D. (1971) Nature and properties of varlamoffite (oxidation products of stannite). International Geology Review, 13, 603614.CrossRefGoogle Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallography, C71, 38.Google Scholar
Spek, A.L. (2009) Structure validation in chemical crystallography. Acta Crystallographica, D65, 148155.Google Scholar
Tschauner, O., Ma, C., Lanzirotti, A. and Newville, M.G. (2020) Riesite, a new high-pressure polymorph of TiO2 from the Ries impact structure. Minerals, 10, 78.CrossRefGoogle Scholar
Udoratina, O.V., Panikirovskii, T.L., Chukanov, N.V., Voronin, M.V., Lutoev, V.P., Agakhanov, A.A. and Isaenko, S.I. (2024) Dmitryvarlamovite, IMA 2022-125a. CNMNC Newsletter 76; Mineralogical Magazine, 88, https://doi.org/10.1180/mgm.2023.89Google Scholar
Warr, L.N. (2021) IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291320. https://doi.org/10.1180/mgm.2021.43.CrossRefGoogle Scholar
Supplementary material: File

Udoratina et al. supplementary material

Udoratina et al. supplementary material
Download Udoratina et al. supplementary material(File)
File 4.6 KB